
Beginning
Azure IoT Edge
Computing

Extending the Cloud to the Intelligent Edge
—
David Jensen

Beginning Azure IoT Edge
Computing

Extending the Cloud to the
Intelligent Edge

David Jensen

Beginning Azure IoT Edge Computing: Extending the Cloud to the Intelligent Edge

ISBN-13 (pbk): 978-1-4842-4535-4   		 ISBN-13 (electronic): 978-1-4842-4536-1
https://doi.org/10.1007/978-1-4842-4536-1

Copyright © 2019 by David Jensen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484245354. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

David Jensen
Powder Springs, GA, USA

https://doi.org/10.1007/978-1-4842-4536-1

This book is the result of my wife, Tara, supporting me in yet
another big idea that lacked much detail at the time. She loves me and
supports me in ways that would fill volumes more than the technical

content you’re about to read. She is truly my favorite person on the
planet. Thanks, babe, for bearing with me and believing in me for the

past several months.

— David Jensen

v

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

Table of Contents

Chapter 1: Do I Need an Intelligent Edge?��� 1

Edge Computing��� 2

Edge Computing Adoption�� 4

Security�� 5

Network Bandwidth�� 6

Maintenance��� 7

Recognizing Your Organizational Mindset�� 7

Business Cases�� 8

Industrial Automation��� 9

Enhanced Analytics�� 11

Occasionally Offline�� 13

Protocol Translation�� 14

Summary��� 15

Chapter 2: Azure IoT Edge Core Concepts��� 17

Azure IoT Hub��� 17

Containers�� 25

Modules��� 27

Edge Agent and Edge Hub�� 27

Device Twins�� 31

Module Twins��� 35

vi

Edge Message Routing�� 40

Source�� 41

Condition�� 42

Sink�� 43

Edge Device Security��� 43

Edge Deployments��� 45

Summary��� 47

Chapter 3: Azure IoT Edge Development Environment�� 49

Configure VS Code��� 50

VS Code vs. Visual Studio��� 50

First Lap Around VS Code��� 51

Configure VS Code for IoT Edge�� 54

Configure Visual Studio for IoT Edge�� 58

Install .Net Core 2.1��� 61

Install Docker��� 62

Install the IoT Edge Emulator��� 66

Configure IoT Hub�� 66

Create an IoT Hub Instance�� 67

Add an Edge Device to IoT Hub�� 70

Install Azure IoT Edge SDK��� 71

Install the Microsoft Keys��� 72

Install the Container Runtime��� 73

Install the Security Service��� 74

Configure the Security Service��� 76

Summary��� 82

Chapter 4: Hello Edge�� 83

Create a Solution Using VS Code�� 84

Create a Solution Using Visual Studio�� 88

IoT Hub Connection String��� 91

Table of Contents

vii

Exploring the Solution Actions��� 92

Develop��� 93

Build��� 101

Deploy��� 105

Running Your Solution�� 113

Summary��� 117

Chapter 5: Developing and Debugging Edge Modules��� 119

Edge Development Process��� 119

Azure IoT EdgeHub Dev Tool��� 121

Solution Mode�� 124

Single Module Mode��� 125

Azure IoT Edge Dev Tool��� 128

Getting Started with the IoT Edge Dev Tool�� 130

IoT Edge Dev Tool Initial Commands��� 132

Using the IoT Edge Dev Tool��� 133

Debugging Edge Solutions��� 145

VS Code Debugging Overview�� 145

VS Code Debugging in Solution Mode�� 146

VS Code Debugging in Single Module Mode�� 152

Visual Studio Debugging�� 157

Third Party Edge Modules�� 160

Modbus Edge Module��� 161

OPC UA Edge Module�� 163

Summary��� 165

Chapter 6: Analytics on the Edge�� 167

Azure Cognitive Services��� 168

Vision API�� 169

Speech API�� 170

Language API�� 170

Knowledge API�� 171

Table of Contents

viii

Search API�� 171

Cognitive Services Containers�� 172

Using a Cognitive Service Container�� 174

Next Steps with Cognitive Services Containers�� 185

Azure Machine Learning Service��� 186

Summary��� 187

Chapter 7: Device Provisioning Service��� 189

Device Provisioning Workflow�� 190

Device Provisioning Service Concepts��� 191

DPS Enrollments��� 192

DPS Allocation Policies��� 194

Reprovisioning�� 194

Device Provision Service Setup��� 195

Configuring an IoT Edge Device��� 201

Summary��� 203

Chapter 8: Azure IoT Edge Security��� 205

Assessing Security Risks��� 205

IoT Edge-Specific Risks��� 206

Edge Security Attacks��� 208

Secure IoT Edge Hardware��� 209

IoT Edge Security Architecture��� 211

Security Manager��� 211

Security Daemon�� 213

IoT Edge Certificates�� 216

IoT Edge Security Promises��� 221

Trusted Edge Computing�� 223

Summary��� 225

Table of Contents

ix

Chapter 9: Azure DevOps for IoT Edge Solutions��� 227

Signing into Azure DevOps��� 227

Azure DevOps Basic Concepts��� 229

Organization��� 229

Project�� 230

Team��� 230

Work Items��� 230

Repository�� 230

Pipelines��� 231

Azure DevOps Configuration�� 231

Create an IoT Edge Build Pipeline�� 239

Create an IoT Edge Release Pipeline��� 250

Approvals�� 256

Gates�� 257

Summary��� 259

Index�� 261

Table of Contents

xi

About the Author

David Jensen is an IoT and Cloud architect with over 20

years of experience. He has spent over six years designing,

building, and deploying IoT solutions based on the Microsoft

Azure Cloud platform, dating back to before there were any

publicly available IoT services on Azure. He is passionate

about building software solutions that interact with the real

world and is fascinated by the devices that surround us and

how we can leverage them to instrument our environment to

build connected ecosystems.  

xiii

About the Technical Reviewer

Amol Ajgaonkar is the Chief Architect for IoT at Insight Digital Innovation, with

more than 15 years of experience successfully implementing technology for business

outcomes. He is focused on architecting and implementing IoT solutions using Azure

for manufacturing, agriculture, retail, and other industry segments. Amol is a frequent

speaker at technology conferences, most recently presenting on IoT-based solutions to

increase operational efficiencies in the field and creating safe public spaces.

xv

Acknowledgments

I would like to thank Amol Ajgaonkar for his technical expertise in reviewing this book

and Mike Shir and David Pheasant for their support in the early days of wrestling with

these technologies.

Jared Shoemaker, Jeff Dodge, Brandon Elliot, and David Lewerke have all supported

me, encouraged me, and cheered me on at one time or another during this process.

Working with people like you has made work fun again. Thank you!

One last HUGE thank you to the team at Apress for their patience with me and

guidance on this journey.

xvii

Introduction

If you have been paying attention to advances in technology over the past 7–8 years,

you have no doubt heard the term cloud. Cloud has come to mean any processing or

data collection that happens somewhere other than on my machine, which gives way to

terms like “private cloud,” “public cloud,” “self-service cloud,” “managed cloud,” blah,

blah, blah…. With such a broad definition comes a plethora of misunderstandings,

misrepresentations, and misguided advice.

To complicate matters more, even if you have navigated through the pitfalls of

cloud overuse, there are architectural patterns that are easier to design and implement

in the cloud-aware world in which we live, but those, too, have been overrun with

vague definitions and meaning. You’ve no doubt heard of the Internet of Things (IoT)

and Big Data.

And, lastly, one of the latest victims of vague-term disorder is Intelligent Edge. You

have most likely heard that term or you wouldn’t be reading this book. If this term has

lost its significance for you, then read on.

To level set, let me clarify the meaning of cloud for the purposes of this book. In

this book, cloud refers to a public, managed platform that uses a consumption-based

cost model (pay only for what you use) and supports public-facing endpoints as well

as endpoints that are provisioned to only be available within a private network, even

though they are hosted on a public platform. This description of cloud also includes a

self-service management portal for developers to create, remove, and otherwise manage

the resources and services running on the platform.

Shortly after this type of cloud emerged on the horizon, one of the architectural

patterns mentioned above, Internet of Things (IoT), also began to gain popularity and

a significant amount of attention. Over the past few years, it has been one of the most

intriguing technologies and patterns that has come about.

The canonical example of the IoT pattern involves using an electronic device to

instrument and monitor a physical, real-world device. Once instrumented, the electronic

device transmits measurements from the physical device for collection and analysis

xviii

in some back-end data store. The building blocks of this pattern have existed for a few

decades, but they have not been as affordable and, consequently, widespread as they are

now, leading to the massive increase in interest it has generated.

As more and more companies bought into the idea that they could quickly and

cheaply implement their own instance of an IoT architecture and the cloud was gaining

momentum in other areas, the idea of “push everything to the cloud” became the mantra

of the most “edgy” or “disruptive” companies. If you wanted to be known for pushing

the envelope and really innovating, then you had better be pushing all your data to the

cloud… along with the other thousands of companies that were doing the same thing,

sometimes without considering whether it was the right approach.

As more and more companies architect solutions that involve the cloud in some way,

there are more and more examples of when that “cloud or bust” mentality breaks down.

Not every problem can tolerate the bandwidth and latency required to push everything

to the cloud. Not every company can access a public-facing endpoint from their devices.

So, here we are, a decade after the cloud came on the scene, and we are learning that

maybe we don’t need to push everything to the cloud. Maybe we need to consider when

to push data to the cloud and when to process the data where it originates. Enter The

Intelligent Edge.

The “edge” in the intelligent edge refers to the proximity to where the data originates.

Intelligent edge computing then indicates that some intelligence has been pushed out

from the cloud to a point as close to the data origination as possible. There are examples

of this all around us.

Think about cars that automatically apply the brakes for you if they sense an object

in front of the car. Or the alerts that sound if you attempt to change lanes while another

vehicle is in your blind spot. Those decisions must be kept as close to the edge (data

origination) as possible. When deciding whether to stop the car or not, milliseconds of

latency could potentially be a life-or-death situation.

Having the option to apply intelligence to data as it originates gives options to

developers and architects as they architect cloud-enabled solutions. No longer must all

data be sent to the cloud to perform analysis on it. Analysis can now happen on the edge,

and based on that analysis, a subset of the raw data streams can be sent to the cloud.

This saves bandwidth, time, money, and storage.

The Azure IoT Edge platform enables some of the advanced services, once only

available on the Azure platform, to be run on a custom Windows or Linux machine.

Azure IoT Edge is a little over two years old and is continually being updated with

Introduction

xix

more advanced analytics. Currently, there are Azure IoT Edge modules for Stream

Analytics, Machine Learning, image detection, and custom code in either C#, Python,

Java, or Node.

It’s an exciting time to be a developer or architect working with the intelligent edge

concepts, tools, and solutions. But, it can also be overwhelming. As I have built IoT Edge

solutions, I have spent a lot of time trolling forums and message boards just hoping

someone else was having the same issue/error I was having that day. Because when

you’re working on cutting-edge solutions, the documentation is lacking which makes

troubleshooting much more difficult when you hit an error that you don’t understand.

So, you resort to others in your position who might have hit the same issue as you (and

took the time to post about it on a forum).

So, my hope for this book is that it will help answer lots of questions for you and help

you on your journey to become the IoT Edge master in your organization. This book

contains most of what I’ve learned over the past year or so as I have been working in this

space. I wish I had had this book a year ago. I could have saved myself a lot of time and

pain. I hope you find it useful. Let’s get started!

Introduction

1
© David Jensen 2019
D. Jensen, Beginning Azure IoT Edge Computing, https://doi.org/10.1007/978-1-4842-4536-1_1

CHAPTER 1

Do I Need an Intelligent
Edge?
Businesses today are faced with an unparalleled number of choices and technology

decisions as they try to intelligently evolve their systems. There are decisions about if,

how, and when they should virtualize their datacenter, or if they should just continue to

leverage the investment in their current physical assets. If they virtualize, should they use

their own data center or a cloud provider, or a hybrid of both? If they decide to leverage

a cloud platform, which of the hundreds of available service options should they use?

How do these services fit together? What is the most cost-efficient option? The decision

points and options can be very overwhelming. Cloud platforms have created a culture

where the question is not “Is that possible?” but rather “Is that the most efficient way to

do that?” In this environment, where so many tools and advanced capabilities are a click

away, being innovative is not about having the capabilities but about correctly applying

the capabilities to most accurately match the business need. It can be quite confusing

if the right decision factors are not identified. Busyness does not equal productivity. In

technical terms, having a fault-tolerant, highly available, cost-optimized, cloud-native

architecture is still the wrong architecture if it does not correctly meet the needs of the

business.

In this chapter, we will discuss the aspects of edge computing that need to be

considered when you are determining whether it satisfies the needs of your business and

discuss a few real-world scenarios to examine an architecture that properly includes an

intelligent edge.

2

�Edge Computing
Much like the technology options mentioned earlier, edge computing can be

inaccurately identified as the solution when the needs of the business are poorly

defined, or the benefits of the intelligent edge pattern are poorly understood. Edge

computing must be correctly applied to reap the benefits. In fact, it may even be more

susceptible to causing additional problems when it is misapplied. In order to avoid this

pitfall, edge computing must be correctly defined and understood. So, what is edge

computing? The term edge is a relative term. It is helpful (but not complete) to think of it

as “not centralized” computing. The centralized computing model equates to computing

in one (central) location, whether that is in the cloud or in your own datacenter. So,

one aspect of edge computing is that it is much different than the centralized approach

where all data is pushed to a single ingest or storage endpoint. Edge computing is very

decentralized.

But, what nuance about the word “edge” makes this an accurate description? “Edge”

implies that something is located as close as possible next to a reference point. Think

about the two worlds we operate in – one world is our physical world and the second

is the digital world. The physical world is the natural world we live in that contains

everything we can observe with our five senses. The digital world is a world in which

we are merely visitors. We can’t touch, feel, or smell data or digital signals. And for the

longest time, the digital world was kept very separated from our physical world. It lived

in a far-off land known as the Data Center. Then it moved, seemingly, even farther away

to a further-off land known as the Cloud.

However, now, the digital world is moving closer. It’s becoming very integrated

into our physical world – so integrated in fact that the lines between the two worlds are

becoming blurred. The things in our physical world have become the gateway through

which we encounter the digital world. We used to go to specified locations to access

the digital world. But now, we encounter the digital world continuously. This border of

hybrid things that are part physical and part digital is the edge that is referred to in the

term edge computing or intelligent edge.

Chapter 1 Do I Need an Intelligent Edge?

3

If you have been in the IoT space for any length of time, you may have heard the term

field gateway. Intelligent Edge computing is an evolutionary step forward from a field

gateway. It addresses many of the same concerns and eases some of the management

and maintenance difficulties that had been associated with the previous generations

of field gateways. Additionally, it enables some scenarios and functionality that were

difficult to implement up until now. Table 1-1 shows a comparison between the typical

field gateway implementation and an intelligent edge implementation leveraging a

platform like Azure IoT Edge.

Figure 1-1.  Edge computing (Image from Microsoft News Center, Build 2017)

In a sense, the edge has existed as long as both worlds have existed, but it was

previously just very isolated and did not affect us most of the time. Now, the edge

is growing and with it, our awareness of it. Figure 1-1 illustrates an intelligent edge,

which has several data origination points, each coupled with some computing

(intelligence).

Chapter 1 Do I Need an Intelligent Edge?

https://urldefense.proofpoint.com/v2/url?u=https-3A__news.microsoft.com_features_microsoft-2Daims-2Dempower-2Devery-2Ddeveloper-2Dnew-2Dera-2Dintelligent-2Dcloud-2Dintelligent-2Dedge_&d=DwMGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=sIDpoNNco2h8DvCzSaD1hY1xJAgtwcCs2EoU0axm-AE&s=osMXEm9OdP2Ohdwc1_AQP3DC4U0Ipx8Z9JyBjZ8M1SY&e=

4

�Edge Computing Adoption
Now that we have conceptually established what edge computing is and that it may

not be a fit for every architecture, one of the next points of discussion is: how do I

know if edge computing is the right option for my company? Another way of asking

that is: what factors should I be considering regarding the edge computing pattern

and in my organization when making this decision? In the next few sections, we will

look at some of the requirements for edge computing that might be countercultural

for your organization. No doubt, some of these requirements can be challenging for

an organization to embrace and cause internal teams (like networking or security) to

object or resist. For an edge computing solution (really, any solution) to be implemented

successfully, it must be supported internally. If you are the trailblazer tasked with

researching edge computing for your organization, the next sections will help you

Table 1-1.  Comparison of Field Gateway to Intelligent Edge implementation

Field Gateway Azure IoT Edge

Target Business

Scenarios

• Protocol Translation

• �Enable Internet connectivity for

non-Internet devices

• Occasionally connected devices

• Event aggregation or filtering

• Protocol Translation

• �Enable Internet connectivity for

non-Internet devices

• Occasionally connected devices

• Event aggregation or filtering

• �Improve business decisions

with more advanced intelligence

running on the edge

Message

Processing

Updates

• �Refactor custom code and redeploy

(or possibly physically deploy where

connectivity is poor)

• �Adjust message workflow through

configuration and reusable

containers

Deployment

Management

• �Custom monitoring and management

of the deployment process

• �Platform supported reporting and

monitoring

Monitoring • �Custom monitoring or third party

monitoring solution not integrated into

the platform

• Integrated monitoring support

Chapter 1 Do I Need an Intelligent Edge?

5

understand what concerns to address when discussing edge computing with your

organization’s decision-makers who may not be ready (yet) to make the necessary

changes to their practices and policies.

�Security
Security is probably the most common objection whenever a change in computing

patterns begins to emerge. Rightfully so. If any new approach is going to endure, it must

be secure. The IoT pattern and the related security risks have been scrutinized over the

past several years and have been discussed at length. So, I will not repeat that discussion

here, but I would like to list some of the most common concerns relating to the IoT Edge

pattern to establish a baseline understanding of the objections.

�Direct Access

Direct access to the device is one of the most commonly stated concerns about any

IoT solution. The concern stems from the fact IoT devices are not deployed to a secure

location like a data center. Rather, they are deployed to unsecured, remote locations that

are susceptible to various forms of tampering. Tampering can include but is not limited to:

•	 Device manipulation: Someone holds a lighter up to a heat sensor to

set off an alarm

•	 Device firmware hacking: Someone connects to the device and

accesses the firmware to modify the code or replace the code

altogether

•	 Device secret hacking: Someone gains access to security secrets like

access tokens, certificates, device identity keys and more

Once the security layer of restricted physical access is removed, other security

mechanisms must be leveraged that address the additional security risks introduced.

�Untrusted Execution

Another common security concern is the inability to trust the code that is running on

the device. It’s the same issue as the device firmware hacking concern listed above.

Essentially, the problem statement is: how can I guarantee that the code I provisioned

to a device is the same code that is running now? How do I know that someone has not

Chapter 1 Do I Need an Intelligent Edge?

6

modified the code and injected their own logic and circumvented my logic? The Security

chapter discusses the countermeasures Azure IoT Edge has put in place to defend

against this category of attacks.

�Message Replays

A third security concern related to IoT and IoT Edge deployments involves replaying

messages. Message replaying is when a third party captures data from a device message

transmission and uses that information, in whole or in part, to generate additional

messages that are not valid and do not originate on the device. An example of this is a

burglar who sniffs network traffic for home automation systems and captures messages

to unlock a door or disarm a security system so that they could replay them when you’re

not home. The only reason this is not more common is the effort home security and

home automation vendors have invested to protect their communication.

�Direct Access to the Internet

A fourth, but certainly not final, security concern with IoT and IoT Edge deployments

is the fact that many IoT architecture designs require the IoT/Edge device to connect

directly with a public internet endpoint. This can be problematic for companies that

have segmented their network through subnets and firewalls such that the device

network has no direct connection to the public internet. In these cases, a discussion

is required with the IT and security teams to help them understand how these devices

can communicate securely with a public internet endpoint. You may face strenuous

objections within your organization, but the fact remains that this problem has been

identified and solved (refer to the chapter titled “Security” for a more in-depth look

into this topic). You must keep in mind, organizations that evolve are organizations that

succeed. If new opportunities are eliminated simply because they are new or different,

then it is only a matter of time until your organization is obsolete.

�Network Bandwidth
IoT solutions frequently involve low-bandwidth devices and networks. If you measure

your device or network throughput in Kbit/sec instead of Mbit/sec or Gbit/sec, this is

you. Previously, the main concern was pushing out an updated firmware image which

can be anywhere from 1 to 15 MB and in rare cases, even more. With IoT edge, there is

Chapter 1 Do I Need an Intelligent Edge?

7

significantly more processing power and intelligence being used at the edge, which does

not come without its own set of issues. One of the main issues is the size of the code that

must be provisioned to an edge device. The binaries can range in size from 40 MB up to

2 GB. It is simply not realistic to push updates that size over a low bandwidth connection.

If you are in this situation, you will need a plan on how to design for device provisioning.

�Maintenance
Maintaining edge devices varies greatly from maintaining a canonical IoT device. Edge

devices have an OS. Most IoT devices do not. Most IoT devices are either built on bare

metal or have some onboard firmware. Most IoT devices are not running a version of

Windows or full-blown Linux. This is different for IoT Edge devices because IoT edge

devices are usually more powerful than an embedded device and are running either a

full installation of Linux or a version of Windows.

This makes a difference when considering the long-term maintenance of the

device. Is that OS treated the same as other OSes in the organization and is it patched

and updated just a regularly? Or is it treated as a higher-powered embedded device?

In which case, the updates to the underlying OS are not handled through the normal

desktop OS patching mechanisms. Should the device be joined to the domain or treated

as a peripheral? These are some of the unique concerns that must be discussed and

accounted for when designing IoT edge solutions vs. IoT solutions.

�Recognizing Your Organizational Mindset
What I listed in the previous section is just the tip of the iceberg when it comes to issues

that must be discussed and designed around related to IoT edge computing. You might

have been asking “what about this?” and “he completely forgot to mention that!” That’s

okay. The point of the previous section was not to create an exhaustive list of every issue

you might encounter when designing and deploying IoT edge solutions. The goal is just

to get you thinking about what some of the hurdles and roadblocks might be specific

to your organization. Because even though, as we will see later in this book, Azure IoT

Edge solutions are extremely cool and very powerful, they are not a silver bullet. If you’re

only focused on the benefits of these solutions and not the difficulty they might pose for

your specific organization with your specific set of requirements and needs, then you

won’t properly prepare for the change that’s coming and it will likely catch you off guard.

Chapter 1 Do I Need an Intelligent Edge?

8

Given all that and because intelligent edge computing solutions are fairly new, your

organization must have the right mentality when considering this type of approach. Even

with a platform as solid and secure as Azure IoT Edge, when implemented poorly or

partially, it will likely not meet your expectations.

What is the right organizational mentality? Curiosity, adaptability, open minded,

investigative. These are some of the best examples of the right mentality for your

organization. These characteristics promote investigating new technologies to

determine if they will fit into the existing solution landscape within the organization. On

the other hand, preferring process over discovery or making every attempt to minimize

change and risk will severely limit the organization’s ability to gain helpful information

in a test or pilot phase that can assist the production-ready solution and architecture.

If you or your organization is not willing to give a second thought to the way you

derive and collect data, you will not gain the competitive advantages you could with

an intelligent edge solution. If you immediately eliminate an intelligent edge solution

because it poses different security risks than you’re accustomed to solving, then you will

miss out on the competitive advantages. If you assume the strain on the low bandwidth

segments of your network will be too great and you consequently eliminate an intelligent

edge solution before researching alternative approaches, you will miss out on the

competitive advantages. The point to realize is that you cannot expect to integrate an

intelligent edge solution without evaluating other systems. Because intelligent edge

solutions are a new paradigm for many organizations, the integration points must be

reconsidered for the best results. If your goal is to minimize the effect on other systems,

you will end up evaluating the effectiveness of a partially or poorly integrated solution

and that will not give you an accurate understanding of the benefits and power of an

intelligent edge solution for your specific organization.

�Business Cases
If your organization has the right mentality and is open to intelligent edge computing,

examining real-world business cases can help to illustrate how the benefits of intelligent

edge solutions are realized. In the following sections, I will walk through four different

real-world business scenarios and point out the benefits that an intelligent edge solution

provides along the way.

Chapter 1 Do I Need an Intelligent Edge?

9

�Industrial Automation
Industrial automation involves process controls used in the process of manufacturing,

materials processing, such as chemicals or raw materials, and the enforcement of related

quality or safety thresholds. Because industrial processes are based on very repetitive

tasks, precisely automating the process can provide accurate feedback on quality

thresholds, defect detection, and general system anomaly detection which leads to a

more economical, consistent and safe solution.

As automation capabilities have evolved, the scenarios that can be managed by

automation systems have become increasingly advanced. More and more knowledge

and decision making that was previously only possible by a human brain, due to

the complex nature and the variety of the inputs, is being extracted and codified in

monitoring and control solutions based on AI.

Industrial automation has come to be known as the fourth industrial revolution, or

Industry 4.0. The revolutionary aspect of this wave of industrial advancement is made

possible by the technological advancement in sensors, devices, and machines that

allow more tasks to be handled through automation. The capabilities of intelligent edge

computing match perfectly with the capabilities required by the demands of industrial

automation.

An example of how intelligent edge computing fits well with industrial automation

and advances the capabilities can be seen in a typical SCADA1 system. Figure 1-2 shows

a very simplified version of a SCADA system.

1�Supervisory Control and Data Acquisition, in its simplest form, is an architectural style that
involves supervisory computers that ingest sensor information and respond with sending the
appropriate control signal.

Chapter 1 Do I Need an Intelligent Edge?

10

In this simple architecture, the supervisory server communicates with the PLCs and

reads the current values from the various sensors. If a sensor reading is out of range or

appears to be an anomaly, the server will typically send a control signal to the controller

associated with the sensor that generated the anomalous reading. This ingest-interpret-

respond pattern is a great match for an intelligent edge solution. Figure 1-3 shows how

this same simple architecture would look with an intelligent edge implementation.

PLC

Sensor

Control

PLC

Sensor

Control

Supervisory
Server

Human
Interface

Figure 1-2.  SCADA architecture

Chapter 1 Do I Need an Intelligent Edge?

11

Figure 1-3 shows how the implementation of an intelligent edge solution does not

drastically alter the architecture. It simply rearranges where the ingest and control logic

happens as well as (optionally) providing a visualization of the current process state. It

is optional on the edge device because many times there is a separate network machine

that provides a human-readable display.

One of the main benefits of using an intelligent edge solution comes from the use

of a chain of independent modules that can be rearranged, independently updated

and managed, and even harness the power of third party modules from a module

marketplace. This flexibility allows the intelligent edge to evolve and advance much

quicker than the typical SCADA implementation, which is usually a very fixed and closed

system that does not change quickly.

�Enhanced Analytics
A second use case where an intelligent edge solution can provide value is in the use

of advanced analytics like Machine Learning (ML) algorithms or other Artificial

Intelligence (AI) systems. Prior to intelligent edge computing, most advanced

processing workloads, like those required by ML/AI solutions, were handled in a

Ingest
Module

Analysis
Module

Control/
Output
Module

Sensor

Control

Sensor

Control

Intelligent
Edge server

Human
Interface

Visual
Interface

Figure 1-3.  SCADA with an intelligent edge

Chapter 1 Do I Need an Intelligent Edge?

12

cloud environment. That architecture performed adequately for most cases, but there

are instances where the latency of a round trip to the cloud and back was too great,

not to mention possible inconsistencies in network throughput for larger workloads.

Intelligent edge computing allows these advanced scenarios to be performed very close

to the origination of the data, which produces a very tight feedback loop yielding some

powerful yet performant solutions.

Imagine your company has invested time and money to develop some intellectual

property in the form of custom machine learning algorithms. Currently, those algorithms

are being applied to large data sets that exist in your data center or in the cloud. These

data sets represent accumulated telemetry from machines deployed in a factory or

field. The algorithms are used to detect any anomalies and then generate an alert if

one is found. This is a very common approach and falls under the “big data” pattern of

solutions. This architecture can be seen in Figure 1-4.

Data Center or
Cloud Tenant

Machine
emitting

telemetry

Local control
server

(field gateway)

Telemetry
ingestion
endpoint

Cloud storage

Machine
Learning
algorithm

Transmit telemetry

Anomaly detection

Command /
control

endpoint

Send
alertAlert notification

Telemetry

Response

Round-trip delay introduced

Remotely deployed
device and edge device

Figure 1-4.  Cloud-based algorithm pattern

One of the biggest drawbacks from this pattern is the introduction of (potentially

significant) delays from the time the telemetry is emitted from the data originator to

the time a response based on the algorithm can be returned. In some cases, an almost

immediate response is needed.

Chapter 1 Do I Need an Intelligent Edge?

13

Think about a scenario where the telemetry is generated by sensors on a car and

there are on-board computers running algorithms continually determining if the brakes

should be applied to avoid hitting an object or person in front of the vehicle or if a lane

change warning should be displayed to avoid hitting another vehicle in a blind spot.

Both scenarios must occur in milliseconds. There is no tolerance for the time it takes to

send data to the cloud, analyze the data, generate the alert, and transmit that alert back

to the car. The tight feedback loop described in this car telemetry example, which is an

intelligent edge solution, has become increasingly commonplace and organizations need

a platform to deliver solutions that provide the advanced processing logic. Figure 1-5

shows an intelligent edge version for the architecture shown in Figure 1-4.

Figure 1-5.  Intelligent edge-based algorithm pattern

In Figure 1-5, the telemetry is processed, stored and analyzed all in the intelligent

edge runtime. In a background (and most likely asynchronous) process, the telemetry is

sent to the cloud ingestion endpoint for reporting purposes, but the real-time decision

logic and feedback loop is all on the edge.

�Occasionally Offline
A third use case that benefits from an intelligent edge solution is devices that are

occasionally offline. Occasionally offline devices are not always offline because there is

no network/internet connection. Sometimes, battery-powered devices intentionally shut

down or go into a low power mode in which the device turns off the Wi-Fi or cell radio to

save battery life. It later wakes up on a certain schedule, transmits the data, and returns

to the low-power state. But the most common scenario for devices being offline is when

Chapter 1 Do I Need an Intelligent Edge?

14

there is no active network or internet connection. This could be due to mobile solutions

that go through a network dead spot or some temporary interference with the network

connectivity. In these cases, the data that needs to be collected can be stored on the edge

device and then transmitted to the cloud when the network connectivity returns. This

removes the burden of monitoring connectivity from the device and allows the edge

device to manage that functionality. Figure 1-6 shows an example of this scenario.

Data Center or
Cloud Tenant

Offline
device

Telemetry
ingestion
endpoint

Cloud storage

Telemetry
processing

Data
storage

Batched telemetry

Intelligent edge runtime

Telemetry

Remotely deployed
device and edge device

Figure 1-6.  Occasionally offline devices

In Figure 1-6, the offline device is connected to the edge device either through a LAN

connection or through a direct connection like a serial cable. In this case, the IoT device

does not need to concern itself with connecting to the internet. As long as it can connect

to the edge device, it can forget about the delivery of the messages to the cloud or data

center endpoint. In this scenario, the edge device manages the entire process of verifying

the internet connection, storing the messages in the event of lost connection and the

delivery of the messages when the connection is restored.

�Protocol Translation
One final use case that needs to be mentioned is protocol translation. Protocol

translation is needed when devices use a protocol that is not a preferred internet-based

protocol or is a proprietary protocol. In these cases, the edge device can parse the data

from the downstream device(s), transform it into a format that can be sent over the

internet to the telemetry ingestion point. Figure 1-7 shows an example of this.

Chapter 1 Do I Need an Intelligent Edge?

15

Data Center or
Cloud Tenant

Custom
protocol
device

Telemetry
ingestion
endpoint

Cloud storage

Custom
protocol

traffic

Custom
protocol
parser

Transmit data via
Internet-based

protocol

Intelligent edge runtime

Remotely deployed
device and edge device

Figure 1-7.  Custom protocol translation

One of the biggest benefits of this use case is the ability to collect data from devices

that previously had no way to transmit data over the internet and connect them with

the cloud suite of services. This provides modern visibility into legacy devices that may

have otherwise been ignored or eliminated from consideration in advanced analytic

scenarios.

�Summary
In this chapter, we looked at the emergence of edge computing, some of the challenges

that edge computing might create for your organization, as well as some of the use cases

where edge computing really shines. In the entire edge computing evaluation approach,

you must create and maintain the right organizational mentality, which is one of

openness to change and a desire to understand how your company can benefit from an

edge solution when it is rightly understood and applied correctly and specifically to the

needs of your organization. In the next chapter, we will review some of the core concepts

of the Azure IoT Edge platform.

Chapter 1 Do I Need an Intelligent Edge?

17
© David Jensen 2019
D. Jensen, Beginning Azure IoT Edge Computing, https://doi.org/10.1007/978-1-4842-4536-1_2

CHAPTER 2

Azure IoT Edge Core
Concepts
The Azure IoT Edge platform is an extension of the Azure IoT suite of services and,

consequently, leverages the same Azure platform services. There are some differences

between a canonical IoT solution and an IoT Edge solution in the IoT Hub service and I

will highlight those differences where appropriate. To begin your journey toward using

and benefiting from the Azure IoT Edge computing platform, you must understand

the basic concepts of Azure IoT, Azure IoT Edge, and some of the related technologies.

Azure IoT Edge makes use of some existing technologies, like containers, and therefore

requires at least a basic understanding of those as well. If you are new to building Azure

IoT solutions, this chapter will help you understand the basics of IoT in Azure and catch

you up on the changes that have been added to support the IoT Edge platform.

�Azure IoT Hub
Azure IoT Hub is the primary service in Azure for IoT and IoT Edge solutions. It supports

not only device-originated messages destined for the cloud like telemetry, but also

cloud-originated messages destined for the device, like command and control messages.

When building and designing IoT solutions, ingesting messages into the cloud is

simple when compared to sending messages from the cloud to the device. The device-

originated messages are at a far higher scale, but scaling services up to handle millions of

messages is a known pattern that’s been solved. Sending messages from the cloud to the

18

device, even though the scale is typically only a fraction of the ingest side, creates a lot of

concerns and raises questions like:

•	 How do we verify the identity of (trust) the service sending messages

to the device?

•	 How do we send messages to the device if the device is offline?

•	 If the device is never offline, should it continually listen for incoming

messages from the cloud?

•	 How do we keep hackers from overwhelming our devices with

falsified messages?

•	 How do we send configuration updates to the device? Are they

handled differently than a command that needs to run on the device?

If so, how do we do that?

The Azure IoT Hub service helps solve many of these issues. It provides a secure way

for devices to communicate with the cloud as well as a secure way for the cloud to send

messages to the device. Furthermore, it provides a set of REST APIs that allow users to

manage, maintain, and monitor devices. These APIs can be consumed to power custom

monitoring or operations dashboards. It also easily manages device-specific security

keys. Once the device credentials have been verified and device messages start flowing

into the IoT Hub instance, messages can be routed to other Azure services including

BLOB, Table and Data Lake storage, Service Bus Queues and Topics, Event Hub, and

Stream Analytics.

All of this functionality is the same whether the device is a typical IoT device or

an IoT Edge device. But there are some areas where there are differences for IoT Edge

devices. For starters, you can see in Figure 2-1 that the IoT Hub settings blade in the

Azure portal has separate sub-blades for IoT devices vs. IoT Edge devices.

Chapter 2 Azure IoT Edge Core Concepts

19

All of the IoT Edge specific functionality in the Azure portal is contained in the IoT

Edge device management blade. Figure 2-2 shows a simple version of that management

blade. The features and functionality shown in this blade are specific to IoT Edge

devices.

Figure 2-1.  IoT devices vs. IoT Edge devices in IoT Hub settings blade

Figure 2-2.  Azure IoT Edge device management blade

Chapter 2 Azure IoT Edge Core Concepts

20

Let’s review a few of the tasks you can perform in this blade.

	 1.	 Add IoT Edge device: This option creates a virtual device in the

IoT Hub and creates the associated device security keys and

device identity needed to configure and secure the device.

	 2.	 Query device twins: This allows device administrators to filter a

large list of devices to view a summary of a subset of devices.

	 3.	 Edge device list: This area lists the current devices, based on the

selection criteria in the query window. If no query is specified, this

area lists all the edge devices in the IoT Hub.

	 4.	 Edge deployment management: This area of the edge device

management blade is for creating and managing edge device

deployments. Deployments are used to manage versions of code

that are targeted for a certain subset of devices. They are discussed

in more depth later in this chapter.

If you were to select a device from the list and click on it, you would see the device

management blade, as shown in Figure 2-3.

Figure 2-3.  Device management blade

Across the top bar, there are several actions that are available for a device, including

regenerating the device’s access keys if they have been compromised, or sending a

device a message. Arguably, the most significant action that can be performed in this

blade is the ability to assign the modules for a device. The modules (described later

in this chapter) contain the actual logic for the device. So, in effect, when you set and

configure the modules for a device, you are assigning that device to a specific role. If the

Chapter 2 Azure IoT Edge Core Concepts

21

device is a refrigerator, then there will be logic to monitor and adjust temperature, send

alerts when the temperature exceeds certain thresholds, and possibly monitor the state

of the door – whether it is open or closed. All of these pieces of logic are generic when

considered in isolation, but when combined in a specific grouping and configured for a

certain role, then that unique configuration of logic defines the role that device should

carry out. Figure 2-4 shows the Set Modules blade.

Figure 2-4.  Module management blade

In the module management blade, there are two sections. The top section is where

any credentials needed to access a container registry can be entered. These will be

added to the configuration information, called a twin, for the related module. More than

one container registry can be configured, since you may be using modules from multiple

registries. Note that not all container registries require credentials. There are some

publicly available registries that can be accessed with no credentials. Microsoft provides

several containers for use in Edge development like that.

In addition to collecting registry credentials, this blade allows users to add modules

for this device. If you click the “Add” option in the Deployment Modules section, you will

be presented with a screen to collect the configuration for that module. Figure 2-5 shows

what that blade looks like and following that, is a brief overview of the fields and what

they mean.

Chapter 2 Azure IoT Edge Core Concepts

22

Here is an overview of the information on this blade.

•	 Name: The friendly name of the module. This will be used on the

device to name the container.

•	 Image URI: The location in a container registry from which to

retrieve the container image.

Figure 2-5.  Add module blade

Chapter 2 Azure IoT Edge Core Concepts

23

•	 Container create options: A single string that contains valid

JSON. This single string will be passed to the container upon

container instantiation and contains the initial configuration

parameters where needed. Not all containers require this.

•	 Restart policy: A single value that communicates how the Edge

runtime should handle restarts for the container. Valid options

include:

•	 Always: Restart the module if it stops for any reason.

•	 Never: Never restart the module, regardless of why it stopped.

•	 On-unhealthy: Restart the module if it crashes or is deemed

otherwise unhealthy. Otherwise, do not restart it.

•	 On-failed: Restart the module if it crashes, otherwise, do not

attempt to restart it.

•	 Desired status: The initial state for the module. Most of the time,

this will be set to “running” because most users will want their code

to start up automatically. But there may be times when logic does

not need to start up right away but needs to start up on some other

trigger.

•	 Module twin’s desired properties: An optional section that must be

“enabled” using the checkbox. This is a simple way to set some initial

configuration values when the module is deployed. The properties

must all be valid JSON.

•	 Environment variables: A flat list of name/value pairs used to

populate environment variables that can be consumed from within

the module.

All of this information is collected and persisted in the module twin for this module.

An example of the completed blade is in Figure 2-6. You should notice that only the first

two fields are required. Once you have entered all the required information, press Save at

the bottom and the module’s twin will be updated accordingly.

Chapter 2 Azure IoT Edge Core Concepts

24

The example module shown in Figure 2-6 is a publicly available module used to

generate temperature telemetry. The module creates the telemetry internally and has

no other dependencies. It is provided by Microsoft for demo and testing purposes and

eliminates the upfront requirement of connecting to either a simulated or physical

device to generate message traffic.

Figure 2-6.  Add an edge module

Chapter 2 Azure IoT Edge Core Concepts

25

�Containers
Chances are you’ve heard of the containerization epidemic that has been sweeping the

software landscape over the past several years. Although the basic concepts that support

the container model (virtualization and isolation) have been around since the early

2000s, the past five years have been a tipping point for containers as they have become

mainstream. In architecting solutions, it is now common to hear of companies requiring

justification for NOT using containers rather than a justification for using them.

What started out as a simple evolutionary step of virtualization has ballooned into

the de facto way to guarantee a consistent execution runtime. Containers continue to

spread into more and more diverse solution spaces, which demonstrates the flexibility

and benefit they offer. One of the many benefits of containers is the ability to virtualize

small runtime execution environments and distribute those virtualized environments

more easily than an entire virtual machine. Virtual machine images are regularly

30 GB or more, while a container can often be below 100 MB. So, it should not be a

huge surprise to you to find out that containers sit at the core of the IoT Edge runtime

environment. When adopting a container-based approach, there are a few architectural

components that you need to be aware of. There are many details you have to be

aware of if you were solely responsible for managing the runtime. Luckily, IoT Hub

and IoT Edge runtime handle many of these details for you, including the creation and

management of the containers, but it’s helpful to be aware of them at a high level when

developing Edge solutions.

First, you need a runtime to actually interact and manage the containers on the

target machine. The Docker runtime is an example of this. The container runtime

is similar to virtual machine management software, such as Hyper-V. As the VM

management solution manages the resources of the various VMs, so the container

runtime manages the resources for the various containers it’s managing, including

starting containers, stopping containers, restarting containers, etc.

The container runtime for IoT Edge devices is a custom runtime that is based on

Moby, the underlying container technology that Docker is built upon, which allows any

Docker-compatible image to be used in an IoT Edge solution as long as the host device

can support the space and CPU requirements of the container. This also means that any

exiting Docker-based toolchain your organization might be using for development will

work with the IoT Edge tooling as well.

Chapter 2 Azure IoT Edge Core Concepts

26

Second, you need the actual containers. In the IoT Edge world, containers

encapsulate various segments of functionality that are decoupled (called Modules,

which is discussed later) and communicate through a message bus (hosted in a

container called the ‘edgeHub’). Because each container is decoupled and knows

nothing of the other containers running on the edge device, there is great flexibility in

how the containers can be configured to interact with one another. As an organization

begins to grow and advance its suite of available Edge containers, custom solutions can

be created much more quickly using existing containers that may be simply configured

in a new and exciting way.

Note T here is a difference between a container and a container image. To clarify
this difference, it is helpful to use an example from Object Oriented language. In
OOAD terms, the difference between the class definition and a specific instance of
that class represents the difference between a container image and a container.
The container image defines how containers are built and a container is an
instance of an image definition.

A third component needed when using containers is a container registry. You can

think of a container registry as the bookshelf from which the container images (books)

are retrieved. As container images are built, they must be stored somewhere that is

accessible to the container runtime. The runtime is given instructions on which images

to run (including the image version) and then gets a local copy of that image (if it does

not already exist) and starts a container based on the image. To enable and automate

this series of interactions between the runtime and the registry, a well-defined set of

APIs must exist to interact with the container images. This is what a container registry

provides. Well-known, publicly available registries include Docker Hub and the Azure

Container Registry. Figure 2-7 shows how all of these components work together in a

container-based architecture.

Chapter 2 Azure IoT Edge Core Concepts

27

�Modules
One of the most common IoT Edge terms is “module.” An edge module is like a container

image, but an edge module is more than just a container image. An edge module

includes a module identity and module configuration information, which is stored in a

module twin information, which is stored in a module twin. A module identity is a way to

track a specific instance of a module. Imagine you need to deploy the same module more

than once to a given IoT Edge device. The module identity is used to track the separate

instances. This concept is used primarily in the routing of messages, which is discussed

later in this chapter. Another concept specific to an edge module is a module twin. Twins

are also discussed later in this chapter, but for now you should know that in addition to

a device twin, each module in an IoT Edge solution has its own module twin. It’s an edge

specific configuration file for the module.

�Edge Agent and Edge Hub
In the earlier section where we discussed containers, I referred to the container runtime

multiple times and then in Figure 2-7, there is a box labeled “Runtime Agent” that was

left unexplained. Both of these concepts relate to the edge runtime that is composed

of two separate modules that are supplied by the Azure IoT Edge infrastructure. These

two modules are (1) edgeAgent and (2) edgeHub. Together they manage, monitor, and

support the custom modules that you use in your edge solutions. The edgeAgent module

is responsible for retrieving the specified module images from the container registry,

starting up the module, and monitoring the module. If one of the registered modules

stops for some reason, the edgeAgent module restarts it. If the module continually

restarts, errors, or crashes, edgeAgent will use an exponential back off approach for

Container
Registry

Container

Runtime

Container

Image

Image

Runtime Agent

Figure 2-7.  Basic container architecture

Chapter 2 Azure IoT Edge Core Concepts

28

restarts so that resources are not constantly chewed up on the edge device. This is helpful

when using a lower powered device that can be easily overwhelmed by CPU spikes.

One of the other tasks the edgeAgent handles is reporting module status to the IoT

Hub. These status messages, or heartbeats, are used to enable reporting of the devices

based on the last known reported state. The valid options for the status codes are:

•	 200: OK

•	 400: The deployment configuration is invalid

•	 406: The edge device is offline or not sending status reports

•	 412: The schema version in the deployment configuration is invalid

•	 417: The device does not have its deployment configuration set

•	 500: An error occurred in the edge runtime

You can see these status indicators in the Azure portal beside the device. Figure 2-8

shows an example of this.

Figure 2-8.  Device status in Azure portal

The first device has an “N/A” for its response code. This means the physical device

has not been configured to connect to the IoT Hub instance yet.

Note  Keep in mind that the devices listed in the portal are virtual devices that are
primarily placeholder entities with security information associated with it to enable
bootstrapping the physical device. This means that the status will never be real
time, but it should be current within a few minutes. This separation of the physical
device and the virtual device also means that the virtual device can be configured
and ready to go in the portal, but the physical device is not properly configured or
has simply not been powered up. You must keep this in mind to know where to
troubleshoot when things are not working as expected.

Chapter 2 Azure IoT Edge Core Concepts

29

The “OK” beside device-two represents a “200” response from the device indicates

that the device is running and working as expected. You can also see that there is a “406”

response code for device-2222, which indicates the device is offline or has stopped

sending status reports for some other reason.

When you think about the functions of the edgeAgent module, you should primarily

think of module management, while that’s not all it does, that is its primary focus.

The edgeHub module primarily handles the messaging responsibility between the

modules on the edge device and between the edge device and the IoT Hub. This includes

messages exchanged either from device-to-cloud (D2C), which is from the edge device

to the IoT Hub or cloud-to-device (C2D), which is from the IoT Hub to the edge device.

As mentioned before, IoT Edge devices are based on modules. That is different than

regular IoT devices. Whereas in a normal IoT scenario, the device connects directly to

the IoT Hub endpoint using a device agent, and any messages it generates and transmits

are only sent to the IoT Hub, in an Edge scenario, the code that needs to connect to the

IoT Hub is not only running inside a virtualized container, it’s isolated from the IoT

Hub by the Edge runtime. To provide some relief for this challenge and also provide a

consistent Azure IoT API, the edgeHub module exposes an API that is similar to the IoT

Hub API. It actually serves as an IoT Hub proxy for the local edge modules. As a proxy, it

exposes the same protocol endpoints as the IoT Hub and currently supports MQTT and

AMQP, but not HTTP.

Another responsibility for the edgeHub module is authenticating the device with IoT

Hub. IoT Hub only allows secure connections from either regular IoT devices or IoT Edge

devices. So when the edge device first connects to the IoT Hub, it must authenticate itself

using security information that matches the virtual device that already exists in the IoT

Hub. After the initial connection has been established, security information is cached on

the edge device and the IoT hub does not require authentication for future connection

attempts. All of these authentication requests and exchanges are transparent to your

code. You simply issue a connect request from your module code (which looks almost

identical to a connect request from a regular IoT device) and the edgeHub module takes

care of brokering that exchange on your behalf.

Another one of the main responsibilities of the edgeHub module is brokering the

intra-module messaging. When you create and deploy a module, they are by design

independent and isolated from any other module. If they were not, they could not be

independently deployed containers. With this isolation comes a challenge – how does

one module communicate with another module? How can I as a developer consume

Chapter 2 Azure IoT Edge Core Concepts

30

messages from modules that I have no visibility into and how can I send my messages

to other modules that have no visibility into my module? The answer is to use a

message bus.1

The message bus pattern has been around for a while and simply provides a way

for two entities that have no knowledge of each other to communicate. This is done

through a few key abstractions. One of the cornerstones of this pattern is the abstraction

of the “send to” or “receive from” address. In message-oriented architectures, message

publishers have to publish a message to an address or an inbox. When using message

queues, the address is the location of the queue. When using HTTP, the address is

the URL. In both of those instances, there is an out-of-band agreement between the

publisher and the consumer about what the address will be. If that agreement is not

possible, another solution is required, which is one of the solutions the message

bus pattern is intended to solve. The way it addresses that problem is by abstracting

the address to a generic address label or tag. The underlying storage or persistence

mechanism is known only to the message bus, while publishers and consumers are able

to send and receive to and from the address. The implementation of this looks like the

interaction in Figure 2-9.

In this diagram, the publisher sends a message to a generic inbox or address location

named “address1”. The publisher has no idea what consumers (if any) will be receiving

the messages it publishes. Additionally, the consumer registers with the message bus as

a consumer of any messages that are delivered to location “address1”. It is unaware of the

publisher or the timing of the messages that will be delivered to the address.

1�Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley Professional.

Message
Publisher

Message
ConsumerMessage Bus

“address1”

Publish to “address1” Receive from “address1”

No knowledge of each other

Figure 2-9.  Address abstraction in message bus pattern

Chapter 2 Azure IoT Edge Core Concepts

31

This pattern is implemented in the edgeHub module. edgeHub provides an API

for modules to send and receive messages to a generic address location. Modules do

not need to know what the underlying persistence mechanism is or who the upstream

or downstream modules are in the chain. Through this abstraction, modules can be

chained together in various custom message workflow combinations.

Another benefit of this pattern is the way the message bus can hide the details of

message delivery. Imagine the publisher in Figure 2-9 sends a message to “address1” but

there is no consumer or the registered consumer is not currently running. The message

bus has a responsibility to deliver that message when there is an active consumer. This

message buffering can be complicated and the message bus provides welcome relief

to publishers or consumers. As you would expect, the edgeHub module provides this

capability. We will discuss some of the specifics about how it accomplishes this in the

Routing section.

�Device Twins
The concept of twins is not new with Azure IoT Edge, it was introduced into Azure with

the IoT Hub service, but there are some specific additions related to Azure IoT Edge.

Before we get to the IoT Edge specifics, we need to establish a baseline understanding

of twins in general. A device twin is a JSON document, created and managed by IoT

Hub. This document stores properties about the device, as well as other metadata and

configuration information. The properties stored in the twin are both properties to be

pushed to the device called “desired” properties as well as properties that have been

collected from the device called “reported” properties. Both of these sets of properties

have no enforced schema. Because of the asynchronous nature of the twin/device

updates, the twin cannot be guaranteed to be always up to date, but it will always have

the last reported state of the device and will be eventually consistent with the current

properties on the device.

Twins enable backend service interactions through the IoT Hub APIs. Through those

APIs, the metadata in a twin document can be queried, which can enable scenarios

like device reporting on dashboards or monitoring of long-running jobs across many

devices. This is historically very difficult to implement because it requires a real-time

request to every device. With twins, the queries can happen in milliseconds, with the

understanding that the result set is the last reported device state, not a real-time update

from the device. Most organizations are willing to accept that latency.

Chapter 2 Azure IoT Edge Core Concepts

32

The content of the twin JSON document is broken down into four areas:

	 1.	 Identity information: identification properties, like device ID

and X509 thumbprint that are read-only and were created by the

IoT Hub when the virtual device was initially created. While some

of the information in this section may be known to the device

through other means, the device cannot query or otherwise access

the properties in this section of the twin document.

	 2.	 Tags: metadata created by backend services and solutions to

categorize and classify devices. Examples include: the deployment

location (city, building, etc.) or the attached peripherals (heat

sensor, humidity sensor).

	 3.	 Desired properties: created or updated by backend services and

solutions – used to request a configuration change be sent to the

device. Updating the twin document does not immediately update

the physical device. It simply initiates the change request be sent

to the device from IoT Hub.

	 4.	 Reported properties: contains the last known state from the

device for the properties specified in the “desired properties”

section. These are updateable from the device but read-only and

queryable from the backend services.

Figure 2-10 shows a visual representation of the twin structure.

Chapter 2 Azure IoT Edge Core Concepts

33

As shown in Figure 2-10, backend services can interact with the device twin through

the device API provided by the IoT Hub. Through this API, services can read and update

the device tags, read and update the desired properties, and read and query the reported

properties. Additionally, the device can read (and be notified of changes to) the desired

properties and read and update the reported properties. Here is a sample device twin

JSON document:

{

 "deviceId": "device-2222",

 "etag": "AAAAAAAAAAc=",

 "status": "enabled",

 "statusReason": "provisioned",

 "statusUpdateTime": "0001-01-01T00:00:00",

 "connectionState": "connected",

 "lastActivityTime": "2015-02-30T16:24:48.789Z",

 "cloudToDeviceMessageCount": 0,

 "authenticationType": "sas",

 "x509Thumbprint": {

 "primaryThumbprint": null,

 "secondaryThumbprint": null

 },

IoT Hub

Device Back end Service

Device Twin

Identity
(read only)

Tags
(metadata)

Properties

Desired

Reported

De
vi

ce
 A

PI Read, Write

Read, Write

ReadRead, Write

Read

Figure 2-10.  Device twin interactions

Chapter 2 Azure IoT Edge Core Concepts

34

 "version": 2,

 "tags": {

 "$etag": "123",

 "deploymentLocation": {

 "building": "43",

 "floor": "1"

 }

 },

 "properties": {

 "desired": {

 "telemetryConfig": {

 "sendFrequency": "5m"

 },

 "$metadata" : {...},

 "$version": 1

 },

 "reported": {

 "telemetryConfig": {

 "sendFrequency": "5m",

 "status": "success"

 }

 "batteryLevel": 55,

 "$metadata" : {...},

 "$version": 4

 }

 }

}

There are just a few restrictions imposed on any device twin document:

	 1.	 Any desired or reported property must be valid JSON.

	 2.	 The JSON for any property cannot exceed the maximum depth of 5

levels.

	 3.	 The total size of any twin document cannot exceed 8 KB in size.

Chapter 2 Azure IoT Edge Core Concepts

35

�Module Twins
In Azure IoT Edge, the concept of twins not only applies to the edge device, but also to

every module running on that device. The edge device has a twin in addition to each

module having a twin. Because all of the code and configuration happens at the module

level for edge devices, there is very little interaction with the device twin for edge devices,

but you should be aware that it exists. Everything you read about in the previous section

regarding device twins is also true for module twins. The module twin has the same

sections, the same restrictions, and the same API access model. Any device in IoT Hub

can have up to 20 module twins associated with it. Here is a sample module twin – the

only difference is the addition of the moduleId property.

{

 "deviceId": "device-2222",

 "moduleId": "moduleA",

 "etag": "AAAAAAAAAAc=",

 "status": "enabled",

 "statusReason": "provisioned",

 "statusUpdateTime": "0001-01-01T00:00:00",

 "connectionState": "connected",

 "lastActivityTime": "2015-02-30T16:24:48.789Z",

 "cloudToDeviceMessageCount": 0,

 "authenticationType": "sas",

 "x509Thumbprint": {

 "primaryThumbprint": null,

 "secondaryThumbprint": null

 },

 "version": 2,

 "tags": {

 "$etag": "123",

 "deploymentLocation": {

 "building": "43",

 "floor": "1"

 }

 },

Chapter 2 Azure IoT Edge Core Concepts

36

 "properties": {

 "desired": {

 "telemetryConfig": {

 "sendFrequency": "5m"

 },

 "$metadata" : {...},

 "$version": 1

 },

 "reported": {

 "telemetryConfig": {

 "sendFrequency": "5m",

 "status": "success"

 }

 "batteryLevel": 55,

 "$metadata" : {...},

 "$version": 4

 }

 }

}

There are two special module twin cases worth highlighting. Since the edgeHub and

edgeAgent are both modules, they both have twins. Due to the extra responsibility each

of these modules have, there are properties and configuration contained in each of the

twins that any edge device must be aware of. As you begin to develop an Azure IoT Edge

solution, you will add information about custom modules that need to be included in the

deployment. This updates the configuration in the module twin for both the edgeHub

and edgeAgent modules. It should be noted that, unlike other edge modules, the module

twins for these modules are not editable within the Azure portal. The twins for these

modules are updated through other deployment mechanisms that are discussed later.

Here is an example segment from the edgeAgent twin:

"properties": {

 "desired": {

 "schemaVersion": "1.0",

 "runtime": {

 "type": "docker",

Chapter 2 Azure IoT Edge Core Concepts

37

 "settings": {

 "minDockerVersion": "v1.25",

 "loggingOptions": "",

 "registryCredentials": {

 "myRegistry": {

 "username": "userName",

 "password": "password",

 "address": "reg.azurecr.io"

 }

 }

 }

 },

 "systemModules": {

 "edgeAgent": {

 "type": "docker",

 "settings": {

 "image": "mcr.microsoft.com/azureiotedge-agent:1.0",

 "createOptions": ""

 }

 },

 "edgeHub": {

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 "image": "mcr.microsoft.com/azureiotedge-hub:1.0",

 �"createOptions": "{\"HostConfig\":{\"PortBindings\":{\"8883/

tcp\":[{\"HostPort\":\"8883\"}],\"443/tcp\":[{\"HostPort\":

\"443\"}]}}}"

 }

 }

 },

 "modules": {

 "moduleA": {

 "version": "1.0",

Chapter 2 Azure IoT Edge Core Concepts

38

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 "image": "reg.azurecr.io/moduleA:1.0.0-amd64",

 "createOptions": ""

 }

 },

 "moduleB": {

 "version": "1.0",

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 "image": "reg.azurecr.io/moduleB:1.0.0-amd64",

 "createOptions": ""

 }

 }

 }

 }

 }

This snippet shows just the desired properties for the edgeAgent module twin. Take

a look at the registryCredentials section. This should seem vaguely familiar to you.

The concept of container registries and the credentials needed to connect to them was

discussed in the Container section earlier in this chapter. The registryCredentials

section keeps a listing of any container registries that need to be accessed. This

configuration information is sent to the edge device for the edgeAgent to use when

needed to pull down the required images.

Another significant section is the systemModules section. You won’t have to change

this information often, but it’s helpful to be aware of the information in case versions for

the system components are updated.

The modules section is where all the custom (nonsystem) modules are enumerated.

With each module entry, there are a few standard settings like the restartPolicy and

the status, but the most important settings are the image and the createOptions

settings. These specify what container image and version to use as well as the JSON

Chapter 2 Azure IoT Edge Core Concepts

39

create options to pass to the container when it’s starting up. The createOptions setting

must be JSON serialized as a string – it cannot be the actual JSON structure. This is why

the string for the edgeHub createOptions contains so many escaped string literals –

because that value is just a string, but the content of that string can be parsed as valid

JSON when the container runtime supplies that on the command line.

Next, let’s take a look at the twin for the edgeHub module:

"properties": {

 "desired": {

 "schemaVersion": "1.0",

 "routes": {

 �"route1": "FROM /messages/modules/moduleA/outputs/* INTO

BrokeredEndpoint(\"/modules/moduleB/inputs/input1\")",

 �"route2": "FROM /messages/modules/moduleB/outputs/upstreamOutput

INTO $upstream"

 },

 "storeAndForwardConfiguration": {

 "timeToLiveSecs": 7200

 }

 }

}

Remember back to the discussion about the edgeHub module? One of the primary

concerns for the edgeHub module is message routing between modules. The routes

that define the message workflow are defined as part of the edge solution development

workflow and then sent to the edge device as configuration for the edgeHub module

twin. The edgeHub module then defines and manages the defined routes when it starts

up. One special route defined in the example above is $upstream. It is used exactly as it

is shown here and it represents the IoT Hub. So, any route that defines $upstream in the

INTO clause, is defining a route to the cloud endpoint. In the next section, we will discuss

edge routing in more detail. This sample was simply to illustrate where the information

was maintained.

Chapter 2 Azure IoT Edge Core Concepts

40

�Edge Message Routing
The concept of defining message routes has existed in the IoT Hub service for a few years.

Now, that concept has been included in the Azure IoT Edge runtime. We have seen the

way the edgeHub module provides a generic, abstracted way for modules to communicate

with each other while having no knowledge of any other module. These abstracted

connections between modules happen through message routes that are defined in the

edgeHub module twin, as shown in the previous section. An edge message route contains

three parts: (1) a source, (2) a sink (destination), and (3) a condition. The source and sink

are required and the condition is optional. In any given edge solution or deployment,

many routes can exist. Figure 2-11 illustrates some possible routes between modules.

ModuleA ModuleB

Edge Hub (message broker)

“output1”

Route A

“input1”“input1”

Route B

“output1”

Route C

“output2”

Figure 2-11.  Edge message routes

In Figure 2-11, there are two modules and three routes defined. Let’s walk through

each of the three routes.

•	 Route A: Creates a path from the source “output1” in ModuleA to the

sink “input1” in ModuleB.

•	 Route B: Creates a path from the source “output1” in ModuleB to

the sink “input1” in ModuleA. Modules can declare both input and

output addresses in the edge hub message broker.

•	 Route C: Creates a path from a second output source in ModuleB to

the sink “input1” in ModuleA, the same sink used in Route B. Routes

can be combined in many ways. And each module can define

multiple input address and multiple output addresses.

Chapter 2 Azure IoT Edge Core Concepts

41

This example shows some basic interactions with only two modules. When you

apply these same concepts to a deployment with five or six modules, you can begin to

see much more complex scenarios that can be configured using edge routing.

Earlier, in the twin section, you saw an example of routes as they relate to the

edgeHub module twin information. Remember that each route has three components:

the source, the sink, and the condition. Let’s discuss each of those in more detail now. As

a reminder, all routes follow this structure:

FROM <source> WHERE <condition> INTO <sink>

�Source
The source of messages for any given route is used by the edgeHub module to determine

where the messages originate for that route. The source can contain any mixture of the

following components, provided the required order is observed:

•	 * – the wildcard character; it represents all messages from that node

in the descriptor

•	 Module name – the name of the module; used to constrain the

source to only a certain subset of messages from a specific module

•	 Output name – the name of a specific output used in a module; used

to constrain the messages from a certain module to only one of the

module’s outputs

These three components are combined in various ways to describe the message

source for the routes. Here are some example routes:

•	 /messages/* – All messages from any module or leaf device,

regardless of output

•	 /messages/modules/* – All messages from any module, regardless

of the output

•	 /messages/modules/{moduleName}/* – All messages from the

named module

•	 /messages/modules/{moduleName}/outputs/* – All messages

from all outputs used in the named module

•	 /messages/modules/{moduleName}/outputs/{outputName} – All

messages from the named output in the named module

Chapter 2 Azure IoT Edge Core Concepts

42

You might be wondering why edge routing needs a WHERE clause if the source can

handle the flexibility to filter the messages. In truth, you may find that you do not need

the WHERE clause. You might be able to filter the source enough that you never need it.

But, think about the difference between declaratively stating what messages you want

to look at, vs. deciding to make that decision to filter at runtime, based on the payload.

That’s one of the main differences between the approaches. If you know ahead of time

that all messages from a temperature sensor need to be routed to a certain destination,

then filtering the source should be sufficient. But if you need to only route temperature

sensor messages that exceed a threshold, then you will have to use the WHERE clause.

�Condition
The condition of the message route is optional. But, if you decide you need to use

this feature, you declare the condition using the IoT Hub query language. This syntax

supports operations on the systemProperties and appProperties, which both look at the

header of the message, and body properties. To refer to any of these properties in the

query syntax, use the following syntax:

•	 System properties: $<propertyName> ($messageId, for example) –

these header values are provided out of the box to every edge

implementation.

•	 App properties: <propertyName> (messageStatus, for example) –

these header values are added in code by the application and are

custom to the edge implementation.

•	 Body properties: $body.<propertyName> ($body.temperatureValue,

for example) – these values come from the message payload and are

custom to the edge implementation.

There are also functions and operators that are supported in the query syntax. Here

is a sampling of some of the functions supported in route queries:

•	 IS_DEFINED(property): Boolean that returns true only if the property

specified exists in the message

•	 AS_NUMBER(property): Converts the input string to a number for

math operations

•	 LENGTH(property): Returns the length of the property value string

Chapter 2 Azure IoT Edge Core Concepts

43

For a full list of supported operations, see: https://docs.microsoft.com/en-us/

azure/iot-hub/iot-hub-devguide-query-language#expressions-and-conditions.

Here is an example route with a WHERE clause:

FROM /messages/modules/tempSensor/* WHERE IS_DEFINED(alertStatus) INTO $upstream

This route has as its source all messages coming from the tempSensor module. It

then filters those messages to only the messages that have a header property for the

“alertStatus” property. So any messages that do not have that custom property (which

would be added in the edge code) will not be routed.

�Sink
The sink is the destination for the route. There are two options for the sinks. There is a

special, fixed sink that represents the IoT Hub, called $upstream. Any route that specifies

that sink is declaring that those messages should be sent to the IoT Hub endpoint. The

other option for sinks is this format:

BrokeredEndpoint("/modules/{moduleName}/inputs/{input1}")

This example sink describes the “input1” destination in the “moduleName” module.

The resulting messages from the source and any conditional clause will be sent to this

module for processing. If the specified input name does not exist in the module, the

messages cannot be delivered. In this case, the edgeHub module stores the messages for

the TTL (time to live) specified by the storeAndForwardConfiguration.timeToLiveSecs

property of the edgeHub twin desiredProperties section. When the TTL has expired for a

message, it is removed from the local queue of messages to deliver.

�Edge Device Security
Security is a deep topic that we won’t fully cover here, but I want to call out a few

specifics you need to be aware of. First, there is an additional component running on the

edge device that has been overlooked up to this point. It is the security manager service.

The security manager service is the main line of defense against attacks on the edge

device. It is responsible for several tasks on the edge device. These include:

•	 Securing the bootstrapping process of the edge device

•	 Verifying and validating the root of trust on the device and

abstracting it from the other dependent services

Chapter 2 Azure IoT Edge Core Concepts

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-query-language#expressions-and-conditions
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-query-language#expressions-and-conditions

44

•	 Verifying the code (modules) running on the device has not been

tampered with

•	 Securing and storing any secrets required for cloud provisioning

services

•	 Provisioning and storing device identity information

The security manager service is actually the service that starts the edgeAgent

module we have discussed previously and handles validating every module’s identity to

guarantee the module code has not been altered or tampered with. And since a module

cannot start up without being initiated by the security manager service, all module code

running on the edge device can be trusted. The architecture of the security manager

service is shown in Figure 2-12.

Figure 2-12.  The security manager architecture (Image from Microsoft blog post,
“Azure IoT Edge Security Manager”, July 29, 2018)

Chapter 2 Azure IoT Edge Core Concepts

https://urldefense.proofpoint.com/v2/url?u=https-3A__docs.microsoft.com_en-2Dus_azure_iot-2Dedge_iot-2Dedge-2Dsecurity-2Dmanager&d=DwMGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=sIDpoNNco2h8DvCzSaD1hY1xJAgtwcCs2EoU0axm-AE&s=dHku2zStvQarApstJ3nHa_0YUwGnlJRo0skrkuiZM6M&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__docs.microsoft.com_en-2Dus_azure_iot-2Dedge_iot-2Dedge-2Dsecurity-2Dmanager&d=DwMGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=sIDpoNNco2h8DvCzSaD1hY1xJAgtwcCs2EoU0axm-AE&s=dHku2zStvQarApstJ3nHa_0YUwGnlJRo0skrkuiZM6M&e=

45

Two important APIs that the security manager provides are:

	 1.	 Management API: This is a special API reserved just for the edge

Agent module. When the edgeAgent is provisioned, the security

manager service collects information about the edgeAgent

module to use in verification later. The edgeAgent can then use

this API to orchestrate the management of other modules on

the devices. So every call to the underlying container services

is actually brokered by the security manager service from the

edgeAgent to the underlying container API. This allows the

security manager service to perform runtime attestations on the

modules running.

	 2.	 Workload API: This API is leveraged by all modules on the device

to retrieve identity information required to contact the IoT Hub or

other modules. Each module has a unique identity that is known

to the security manager service and can be used to prove the

module is secure.

A related but slightly different concept in Azure IoT Edge is identity.

Every device has a unique identity. Additionally, each module in an edge

deployment has a unique identity. These identities are created and managed

in the IoT Hub, but the necessary information is provisioned to the edge

device so that the security manager service can validate and verify not only the

device’s identity but also the module’s identity. This will be discussed later in

the Security chapter.

�Edge Deployments
Once you begin managing large fleets of devices, rolling out changes becomes challenging.

IoT Hub offers a feature called Deployments that helps make this task less challenging.

While this feature is not specific to Azure IoT Edge, there are a few IoT Edge specific

features that you should be aware of. Essentially, deployments are a way to group devices

and apply a common configuration manifest (configuration settings and list of modules) to

that group and hand that orchestration workload off to IoT Hub. Deployments are created

in IoT Hub, either through the portal, the PowerShell interface, or the API interface.

Chapter 2 Azure IoT Edge Core Concepts

46

Once a deployment is defined, the IoT Hub instance continually manages the

deployment, evaluating the target devices and the configuration specified, ensuring the

devices always have the correct software and settings. Figure 2-13 shows the Azure portal

UI where a deployment can be created.

Figure 2-13.  Create a deployment in the Azure portal

If you click the Add and IoT Edge deployment link in Figure 2-13, you will be

presented with a screen containing several steps that you must complete. There are a

lot of concepts mentioned in this chapter and that will be mentioned in the upcoming

chapters that you need to understand before you will be able to correctly create and

manage an IoT Edge deployment. But remember that all of the configuration for IoT

Edge devices can and should be automated through deployments. Here is a description

of the steps you can complete to create a deployment. If you don’t understand all of

these concepts now, just mark this section and return to this when you are ready to

automate some of your edge deployments.

•	 Name and label: The name of the deployment and any metadata tags

you want to associate with this deployment.

•	 Add modules: A list of the modules that should be assigned to

the targeted devices. If any of the modules are housed in a secure

(private) container registry, you need to provide the container

registry credentials in this step as well.

•	 Specify routes: The routes that should be configured and added to

the deployment manifest for the target devices.

Chapter 2 Azure IoT Edge Core Concepts

47

•	 Specify metrics: A list of custom name/value pairs that should be

associated with the deployment. You can provide a metric name

and metric value, which can be a query against the device metadata.

The metric value is continually evaluated and updated based on the

progress of the devices targeted in the deployment.

•	 Target devices: A target condition (in the form of a where clause)

used to identify the devices to be included in the deployment.

This is a dynamic condition and is continually evaluated to detect

what devices should be included and what devices should be

removed from the deployment. In the target devices section, you

can also provide a priority. A priority determines which deployment

configuration takes precedence if there are multiple deployments in

place for a specific device. The higher priority wins.

�Summary
In this chapter you learned about the core concepts that are involved in an Azure IoT

Edge solution. You learned about some of the differences in IoT Hub for edge devices.

You examined how existing technologies like Docker, Moby, and containers are used

to support the concept of edge modules, and that the edge runtime is composed of

two special modules, edgeAgent and edgeHub, that each have a certain set of tasks

they are responsible for. We looked at how twins are used for device management, but

more specifically to IoT Edge, we saw how each module has a twin as well that follows

the device twin model. We saw how edge device routing enables the ability to let

decoupled modules communicate with one another. Finally, we discussed a high-level

overview of the edge security manager service along with IoT deployments. If you have

been following along, you should now have a solid understanding of all the concepts

required to be productive with Azure IoT Edge. In the next chapter, we will be setting our

development environment so that we can start building edge solutions with the right

tools.

Chapter 2 Azure IoT Edge Core Concepts

49
© David Jensen 2019
D. Jensen, Beginning Azure IoT Edge Computing, https://doi.org/10.1007/978-1-4842-4536-1_3

CHAPTER 3

Azure IoT Edge
Development Environment
The Azure IoT Edge platform has a robust set of tools that provides developers with

a similar development experience to what they are used to, in spite of the more

complicated configuration of an edge solution. The Azure IoT Edge development

toolchain is based on Visual Studio or VS Code, Docker/Moby, .Net Core (for .Net apps),

Azure IoT Hub, and a container registry, usually either DockerHub or Azure Container

Registry (ACR). This chapter will walk you through how to set up, configure, and

connect all of these separate technologies to create a cohesive development experience.

For examples, we will use a Windows 10 machine, but you can use a Windows Server

machine as well if needed.

One of the first things to highlight about the edge development experience is that

Azure IoT Edge development work can be done in either the VS Code IDE or Visual

Studio. This chapter will walk you through setting up both environments. If this is your

first experience with VS Code, that is okay. This chapter will walk you through everything

you need to know to configure your development environment from the beginning.

Another important point to note is that you will need access to an instance of the

Azure IoT Hub service in Azure. That is required to configure and manage your edge

device. So, if you do not have access to an Azure subscription, you can sign up for a free

trial of Azure at: https://azure.microsoft.com/en-us/free/.

There is a third point to be aware of if you are running this setup process on a

virtual machine. Part of this configuration process in this chapter will be configuring

your development machine as an edge device. Because the edge runtime is based

on virtualization technologies like Docker and Moby, installing Docker and/or Moby

requires nested virtualization to be enabled in your VM. If you are running on a normal

development machine, this is not required. But there will be steps to guide you on how

to set that up in the section on setting up Docker.

https://azure.microsoft.com/en-us/free/

50

Note  Additionally, if you are running this setup process using a virtual machine
in Azure, you must select a Windows 10 VM size of at least Standard D4s v3.
This size has the number of CPUs required to enable nested virtualization. If you
are running on a machine that is less than that size, you should stop reading this
chapter and scale up your VM as a first step.

�Configure VS Code
As I mentioned earlier, IoT Edge development can be done in either VS Code or Visual

Studio. In this section, we will walk through setting up VS Code to develop IoT Edge

solutions. VS Code was the first IDE to support IoT Edge development and, as a result, is

more mature. If you do not have VS Code installed you can install and download it from:

https://code.visualstudio.com/. Once you have downloaded it, please run the install

process. If this is your first time using VS Code, please read through the following two

sections. If you are familiar with VS Code, you can skip to the section on Configuring VS

Code for IoT.

�VS Code vs. Visual Studio
VS Code is Microsoft’s cross-platform, open-source Integrated Development

Environment (IDE). One of the main differences between VS Code and Visual Studio is

that Visual Studio was a large install, packed with lots of project and solution templates

(and if you are anything like me, you only used 5 – 10% of those templates). Whereas,

VS Code is a much smaller initial install (< 50MB, compared to the Visual Studio install

of > 1 GB). VS Code is so much smaller because it does not have hundreds of project

and solution templates included. The initial download is a very streamlined package,

which does not initially support languages like C#. However, there is a vast marketplace

that contains thousands of extensions. So, once you install VS Code, the most common

next step is to find and install all the required extensions to support your development

requirements.

Another difference between VS Code and Visual Studio is that VS Code is free. It

does not require a license for private or commercial use. This can mean potentially huge

savings for development shops who are used to spending several thousands of dollars

Chapter 3 Azure IoT Edge Development Environment

https://code.visualstudio.com/

51

for Visual Studio. This does not mean that VS Code can perform all the tasks of Visual

Studio. It cannot. But if the tasks you need are supported by VS Code, then it is a great,

cost-effective option.

A final difference between VS Code and Visual Studio is the cross-platform nature

of VS Code. VS Code will run on Windows machines as well as Mac OS and Linux

machines. Visual Studio could only run on Windows for many years, but recently

Microsoft has released a version of Visual Studio that will run on Mac OS.

�First Lap Around VS Code
Whenever you launch VS Code, you are presented with the welcome screen. Figure 3-1

shows what that looks like.

Figure 3-1.  VS Code welcome screen

Chapter 3 Azure IoT Edge Development Environment

52

From the welcome screen, you can enable a guided tour to get more familiar with

the environment. Click the “Interface overview” option in the bottom right section of the

Welcome Screen. Once you click this option, you should see options appear as shown in

Figure 3-2. These guides help to point out the major components of the VS Code UI.

Figure 3-2.  VS Code guided interface overview

Additionally, if you are familiar with other code editors and prefer to use the

keyboard shortcuts from that editor, you have the option to mimic other editors. To do

this, simply click the Settings and keybindings option under the Customize section on

the welcome page. You should see a list of popular keymaps as shown in Figure 3-3.

Chapter 3 Azure IoT Edge Development Environment

53

One of the main differences between Visual Studio and VS Code that we mentioned

earlier is that VS Code does not include a wide variety of project templates or extensions

to use with the initial install. The way you customize and enhance your VS Code

experience is through the VS Code extension marketplace. Extensions and the extension

marketplace are first-class concepts in VS Code and there are extensions created by

companies like Microsoft as well as individuals that enable just about anything you can

think of needing in a source code editor. An example of some extensions is shown in

Figure 3-3. If you look at the search bar for that example, you see that the list is filtered

to only include the recommended keymaps. But you can search for any keyword you

need. You can also visit: http://marketplace.visualstudio.com/VSCode and browse

all the available extensions in your browser. Figure 3-4 shows some of the most popular

extensions in the marketplace for VS Code.

Figure 3-3.  Available keymap extensions in VS Code

Chapter 3 Azure IoT Edge Development Environment

http://marketplace.visualstudio.com/VSCode

54

Figure 3-4.  Popular extensions in VS Code marketplace

�Configure VS Code for IoT Edge
Now that we have installed VS Code, we need to configure it for working with the Azure

IoT Edge platform. If you have not already opened your instance of VS Code, open it

now. You may be prompted to update it, based on how long it’s been since you installed

Chapter 3 Azure IoT Edge Development Environment

55

it. The product team is continually updating it. So, if it’s been longer than a couple of

weeks, chances are, there’s an update waiting for you.

Git is the default source control option in VS Code and there is support built into VS

Code for Git from the ground up. If you do not have Git installed on your machine, you

will be prompted by VS Code to install it. If you see the prompt, shown in Figure 3-5,

you can click the Download Git button which will install Git on your machine. It should

be noted that this installation is not simply installing a Git plug-in into VS Code – Git is

being installed as a standalone product that VS Code will then hook into.

Figure 3-5.  VS Code prompt to install Git

When installing Git, you can choose VS Code as the default Git editor. This simply

means that you will use VS Code when Git needs you to type in a message. If you do not

select this option, Git will use your system’s default editor. You do not have to select this

option and it will not affect any of the steps that follow. But if you’d like to choose that

option, select it in the dialog, as shown in Figure 3-6.

Figure 3-6.  Select VS Code as the default editor

Chapter 3 Azure IoT Edge Development Environment

56

Once, VS Code is opened, we can begin to install the required extensions from

the VS Code marketplace. We will install four VS Code extensions to help with the IoT

Edge development process. Click the VS Code extensions icon on the left side of the

window. Then, in the search bar, enter “azure iot”. You should see a list of results similar

to Figure 3-7.

Figure 3-7.  Azure IoT related extensions for VS Code

In the list of extension search results, select the Azure IoT Edge extension. After

selecting it in the list, you need to click the green Install button. Once that is complete,

you need to install the Azure IoT Toolkit extension. It may install as part of the IoT Edge

extension installation process. But if it does not, simply select it in the list of extensions

and click the green Install button for it. Once the install is complete, click the reload

button next to the extension. If everything installed correctly, you should see the Azure

IoT Toolkit Extension welcome screen display as shown in Figure 3-8.

Chapter 3 Azure IoT Edge Development Environment

57

Next, in the VS Code extension window, search for C# extensions and install the

extension shown in Figure 3-9.

Figure 3-8.  Azure IoT Toolkit welcome screen

Figure 3-9.  C# extension

The C# extension for VS Code gives you a native C# coding experience in VS Code,

including Intellisense, refactoring/renaming, compile-time validation and more.

Remember, VS Code does not natively understand C# as Visual Studio does. So, this

helpful extension gives us many of the C# helps, tricks and hints in VS Code that we

now rely on in Visual Studio. The upcoming examples will leverage the C# edge module

template, which needs this extension.

Chapter 3 Azure IoT Edge Development Environment

58

The last VS Code extension we need to install is the Docker extension. You can

search for docker in the extension search bar as shown in Figure 3-10. Once you have

selected it, install it as you did with the other extensions.

Figure 3-10.  Docker extension

�Configure Visual Studio for IoT Edge
If you would like to use Visual Studio for your IoT Edge IDE and you have not installed

Visual Studio 2017, you can download the Community Edition from https://

visualstudio.microsoft.com/downloads/. If you have Visual Studio installed, verify

that your version is at least 15.7. This is a requirement for the Azure IoT Edge tooling.

You can check your version by clicking Help ➤ About. If you have a version less than

15.7, you need to update it now before you move ahead. Additionally, check any update

notifications in Visual Studio you may have to ensure you have installed all available

updates for Cloud Explorer. This component needs to be up to date as well. Once you

have completed any needed updates for both Visual Studio and Cloud Explorer, you

should see the IoT Hubs resource type in the Cloud Explorer, as shown in Figure 3-11.

Chapter 3 Azure IoT Edge Development Environment

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

59

Once you have downloaded the installer, complete the install process. After the

installer completes, launch Visual Studio to allow it to run the initial configuration

process. After that completes, you can download and install the Azure IoT Edge

Tools add-in for Visual Studio from here: https://marketplace.visualstudio.com/

items?itemName=vsc-iot.vsiotedgetools, or you can go to http://marketplace.

visualstudio.com/ and search for Azure IoT Edge Tools. It should be the first result as

shown in Figure 3-12.

Figure 3-11.  Updated Cloud Explorer

Chapter 3 Azure IoT Edge Development Environment

https://marketplace.visualstudio.com/items?itemName=vsc-iot.vsiotedgetools
https://marketplace.visualstudio.com/items?itemName=vsc-iot.vsiotedgetools
http://marketplace.visualstudio.com/
http://marketplace.visualstudio.com/

60

Click “Download” and then run the VSIX installer package. You can verify that the

installation completed successfully, but checking to see if you a new option in the

File ➤ New Project dialog as shown in Figure 3-13.

Figure 3-12.  Visual Studio marketplace

Chapter 3 Azure IoT Edge Development Environment

61

�Install .Net Core 2.1
If you have not already installed the .Net Core 2.1 SDK, you will need to install it from

www.microsoft.com/net/download. Figure 3-14 shows the download page and which

option to select.

Figure 3-13.  New IoT Edge project type

Chapter 3 Azure IoT Edge Development Environment

https://www.microsoft.com/net/download

62

�Install Docker
Docker is a key component of local IoT Edge development. If you do not already have

it installed, you will need that as well. I assuming you are running on a Windows

development machine. If that is the case, you can install Docker Community Edition

for Windows, from: https://store.docker.com/editions/community/docker-ce-

desktop-windows. If you are running this on a Linux or Mac development machine, go

to: https://store.docker.com and find the Community Edition that is right for your

machine. If you have never downloaded Docker before or are not logged in with your

Docker credentials, you will see a button, as shown in Figure 3-15, asking you to login to

download Docker.

Figure 3-14.  .Net Core 2.1 SDK install

Chapter 3 Azure IoT Edge Development Environment

https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://store.docker.com

63

Figure 3-16 shows the Docker login dialog. If you have a Docker ID, use those

credentials to login. If you do not have a login, click the Create Account option, as shown

in Figure 3-16.

Figure 3-15.  Login prompt to download Docker

Figure 3-16.  Docker login dialog

Occasionally, I have had trouble with the next step and the Sign Up button will stay

disabled, even after I entered the account information. If this happens to you, just refresh

your browser until you see the “I’m not a robot” captcha, as shown in Figure 3-17. Then,

you should be able to proceed by entering your information.

Chapter 3 Azure IoT Edge Development Environment

64

Once you have created a Docker account, or signed in with your existing Docker

account, you should see the option to install Docker as shown in Figure 3-18.

Figure 3-17.  Docker ID creation dialog

Figure 3-18.  Docker download dialog

After Docker has downloaded and it finishes the install, you will be prompted to

restart your machine. Restart and Docker should attempt to start after you login. If you

do not have virtualization enabled (or nested virtualization, if running this on a VM),

you will be prompted to enable Hyper-V. As a reminder, there was a note earlier in this

chapter that mentioned the minimum size required if you are running this setup process

using a virtual machine in Azure. If that is you, you must select a Windows 10 VM size of

at least Standard D4s v3. This size has the number of CPUs required to enable nested

Chapter 3 Azure IoT Edge Development Environment

65

virtualization. If you did not heed the earlier warning, you need to scale your machine to

at least that size before continuing. The next steps will not work on Azure VMs smaller

than that size.

Regardless of the location, if you are running on any virtual machine, you must

enable nested virtualization. To enable nested virtualization, use the following steps.

To enable nested virtualization on a Windows VM:

	 1.	 Launch a Powershell Window as Administrator.

	 2.	 Run the commands in Listing 3-1 from the Powershell window.

Listing 3-1.  Commands to enable nested virtualization on Windows VM

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Hyper-V -All

-Verbose

Enable-WindowsOptionalFeature -Online -FeatureName Containers -All -Verbose

bcdedit /set hypervisorlaunchtype Auto

	 3.	 Restart your machine, if you were not prompted to do so already.

Once Docker has been installed and you have enabled (nested) virtualization, you

need to create a local Docker registry for holding local images as you develop. To create

and start a local registry, run the command shown in Listing 3-2 from a command prompt:

Listing 3-2.  Docker command to start a local registry

docker run -d -p 5000:5000 --name registry registry:2

This command starts local docker registry on port 5000. To verify that things are

running as expected, from the command line run the command shown in Listing 3-3.

Listing 3-3.  Docker command to list currently running containers

C:\> docker ps

If everything is running as expected, you should see the list of currently running

Docker containers. It should look similar to the output in Figure 3-19.

Chapter 3 Azure IoT Edge Development Environment

66

�Install the IoT Edge Emulator
One of the newer tools to the IoT Edge family of tools is the IoT Edge Dev Tool. It is

a python package that has a simulator for the Edge runtime as well as support for

debugging and testing IoT Edge modules and solutions. The dev tool allows developers

to run modules on their development machine without having to run the module/

solution in a Docker container. You must have Docker CE as well as Python (2.7/3.6)

and Pip installed. Once you have those components installed, simply run the command

shown in Listing 3-4.

Listing 3-4.  Install IoT Edge Dev Tool

pip install --upgrade iotedgehubdev

Once this command completes, the dev tool is installed. We will configure it and set

it up in the next chapter.

�Configure IoT Hub
The primary Azure service that manages IoT devices, including IoT Edge, is the Azure

IoT Hub. Many of the core concepts for IoT Hub were reviewed in the previous chapter.

But at this point in the process, we need to create an instance of IoT Hub, in order to

provision the security information and device metadata required to connect an actual

device to the service.

Figure 3-19.  Docker registry container running

Chapter 3 Azure IoT Edge Development Environment

67

If you do not see IoT Hub in the left navigation, you can click All Services at the top

of the left navigation panel and then enter “iot” in the search bar. IoT Hub should be

in the list of the results, at which point you can click it. Once you have clicked the IoT

Hub service, you will see an Add option at the top of the blade. Click that to follow the

prompts below and create an instance of the IoT Hub service. Figure 3-21 shows the first

screen in this process.

Figure 3-20.  IoT Hub in the Azure portal

�Create an IoT Hub Instance
To create an instance of the Azure IoT Hub service, log in to the Azure portal and click

IoT Hub in the left navigation menu, as shown in Figure 3-20.

Chapter 3 Azure IoT Edge Development Environment

68

After you enter the basic naming and location information for your instance, click

Next at the bottom of the blade. The next screen allows you to select the size and number

of IoT hub instances you need, as shown in Figure 3-22.

Figure 3-21.  IoT Hub creation basic information

Chapter 3 Azure IoT Edge Development Environment

69

Since we are targeting a development, I suggest using the Free (F1) tier, but keep in

mind that there is only one free instance allowed per Azure subscription and it cannot be

scaled up – meaning, when you want to scale up, you will have to create a new instance

of IoT Hub at the desired level. The Free tier is the only tier with this limitation. All other

tiers can be scaled up or down in place as needed. Additionally, the Free tier has a limit

of 8,000 messages / day. So, if you were to run a robust test that generated a significant

number of messages, you could burn through all your messages in a day. Once you have

selected the size and number of IoT Hub instances you need, select the Review + create

option and then press the “Create” button.

Figure 3-22.  Azure IoT Hub size options

Chapter 3 Azure IoT Edge Development Environment

70

�Add an Edge Device to IoT Hub
After your IoT Hub instance has finished deploying, navigate to your instance and select

the IoT Edge blade, as shown in Figure 3-23.

Figure 3-23.  IoT Edge blade Azure portal

Once you select the IoT Edge blade, you will see any edge devices you’ve added

to this IoT Hub instance as well as the option to add a new device. This is shown in

Figure 3-24.

Chapter 3 Azure IoT Edge Development Environment

71

Click the Add an IoT Edge device option at the top of the blade. You will be prompted

to enter a unique device ID. Enter the ID and click the Save button. When you click the

Save button, IoT Hub generates and provisions a set of security keys and other metadata

associated with the device. Once you have created at least one edge device in the Azure

portal, you are ready to connect and provision the actual device to the IoT Hub using the

information (security keys, connection strings, etc.) generated in this step.

�Install Azure IoT Edge SDK
Up until this point, we have been installing many of the prerequisites for the Azure IoT

Edge SDK. Now we will begin installing and configuring the SDK on your target IoT

Edge device. This can be your development machine or another machine. If you are not

setting up your development machine at this point, you should plan on returning to this

section and walking through the next few sections with your machine. Developing and

debugging becomes much easier if you are able to run your edge module code locally

and attach the VS Code debugger to it.

Figure 3-24.  IoT Edge details in the Azure portal

Chapter 3 Azure IoT Edge Development Environment

72

You can set up the edge SDK on either a Windows or a Linux machine. Currently,

the only Linux installations supported are Ubuntu 16.06 and 18.04, but support for more

installations and versions are being added. As you walk through the SDK installation

process, you will see the commands for both Windows and Linux. Regardless of the

platform on your machine, you can follow the steps here. It is important to note that

some of the steps required for Linux installations are not required for the Windows

installations because of the preexisting trust that Microsoft has with the Windows OS. So,

there are a few extra small steps required for the Linux installation, just to provision the

security information required to safely download Microsoft software packages.

�Install the Microsoft Keys
If you are running Linux, you will need to add security information to the machine so

that the Microsoft software repository feeds are trusted. Some of the software must be

downloaded and installed from a trusted source that is discoverable. To enable this and

add the Microsoft information, run the commands in Listing 3-5.

Listing 3-5.  Ubuntu 18.04 commands to add Microsoft package sources

Install repository configuration

curl https://packages.microsoft.com/config/ubuntu/18.04/prod.list >

./microsoft-prod.list

sudo cp ./microsoft-prod.list /etc/apt/sources.list.d/

Install Microsoft GPG public key

curl https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor >

microsoft.gpg

sudo cp ./microsoft.gpg /etc/apt/trusted.gpg.d/

Perform apt upgrade

sudo apt-get upgrade

The result of the commands should look similar to the output shown in Figure 3-25.

Chapter 3 Azure IoT Edge Development Environment

73

If you are running Windows, the needed trust and software source information

is already included in the operating system. So, there is no need to run the Windows

equivalent of these commands.

�Install the Container Runtime
Once the repository feeds have been installed and configured on a Linux machine, the

required IoT Edge packages can be added using the normal Linux package installation

utility apt-get. To download these packages, run the commands in Listing 3-6. It is

important to note that these commands are installing the Moby container runtime, not a

full-featured implementation of Docker. Moby is the only supported container runtime

for IoT Edge and should be used for production scenarios, but you can use Docker if

needed in the development and testing scenarios.

Listing 3-6.  Ubuntu 18.04 commands to install Moby container runtime

sudo apt-get update

sudo apt-get install moby-engine

sudo apt-get install moby-cli

The result of the commands should look similar to the output shown in Figure 3-26.

Figure 3-25.  Registering Microsoft software repository feed on Linux

Chapter 3 Azure IoT Edge Development Environment

74

For Windows installations, the steps performed earlier that installed Docker for

Windows, accomplished the same result as these commands. If you completed those

steps, there are no further steps required to install a container runtime on Windows. If

you did not complete those steps, please refer to that section and complete those steps

now.

�Install the Security Service
Now that your machine has been configured with the required perquisites, the IoT Edge

security service can be installed. If you remember back to the discussion in the previous

chapter, the security service is the initial service from which all other IoT Edge services

are launched. It ensures all the system-level integrations are done in a secure way to

prevent hacking or other forms of device tampering. To install the IoT Edge security

service on Linux, run the commands shown in Listing 3-7.

Listing 3-7.  Linux commands to install IoT Edge security service

sudo apt-get update

sudo apt-get install iotedge

Figure 3-26.  Installing IoT Edge container packages on Linux

Chapter 3 Azure IoT Edge Development Environment

75

The output from these commands should look similar to the output shown in

Figure 3-27.

Figure 3-27.  Installing the IoT Edge security service on Linux

To install the IoT Edge security service on Windows, open a Powershell window as an

Administrator and run the commands shown in Listing 3-8.

Listing 3-8.  Powershell command to install the IoT Edge security service

. {Invoke-WebRequest -useb aka.ms/iotedge-win} | Invoke-Expression;

Install-SecurityDaemon -Manual -ContainerOs Linux -DeviceConnectionString

'<connection-string>'

This command downloads a Powershell script which includes new commands

related to (un)installing the security service. The Install-SecurityDaemon cmdlet can

be invoked as either a manual device registration or as part of a device provisioning

(DPS) workload.

Note  The Azure Device Provisioning Service (DPS) is an automated way to
connect fleets of devices to Azure without having to individually configure each
device. We will go into that service in detail in a later chapter.

Chapter 3 Azure IoT Edge Development Environment

76

The command line arguments for the Powershell script include:

•	 Manual: Indicates a manual device registration and will prompt for/

require the device connection string parameter.

•	 DeviceConnectionString: Parameter that is requested only if

“Manual” is specified on the command line. The value supplied

should be the primary or secondary connection string for the

device, not the IoT Hub.

Note  There are two main connection strings to be aware of in IoT Hub. The main
connection string relates to overall service. There are also connection strings for
each device. Pay close attention to whether instructions are requesting the IoT Hub
connection string or the device connection string.

•	 DPS: Indicates the device is being automatically provisioned using

the Azure Device Provisioning Service and will prompt for/require

the DPS scope ID and registration ID.

•	 ScopeID: A unique ID that indicates the device provisioning

service the device should be registered to

•	 RegistrationID: A unique ID that represents the device within

the device provisioning scope

•	 ContainerOS: Specifies the type of containers to use on this machine.

Valid values are “Windows” and “Linux.”

�Configure the Security Service
The security service creates several supporting files that are used to configure it. The

main file is located at /etc/iotedge/config.yaml for Linux and C:\ProgramData\

iotedge\config.yaml for Windows. If you followed the steps above for installing the

security service on a Windows machine, the Powershell script updated this file for you. If

you followed the steps above for installing the security service on a Linux machine, you

still need to configure the service with the device specific information.

Chapter 3 Azure IoT Edge Development Environment

77

Note  The configuration file is in YAML. Configuring an IoT Edge device does not
require an in-depth knowledge of YAML, but if you are unfamiliar with the structure
of a YAML and would like to read more about it, visit http://yaml.org for more
information.

To configure the config.yaml file on a Linux machine, you can run the command in

Listing 3-9 which launches the file into an editor.

Listing 3-9.  Command to edit config.yaml file

sudo nano /etc/iotedge/config.yaml

Once you have the file open in the editor, look for the provisioning section and

replace the manual / device_connection_string entry to be the device connection

string for your device. Save and close the file, by typing Ctrl + X, then Y, then Enter.

Once you have edited and saved the config.yaml file, you must restart the service for the

changes to take effect. You can restart the service using the command in Listing 3-10.

Listing 3-10.  Linux command to restart the iotedge security service

sudo systemctl restart iotedge

After the service restarts, you should be able to see information in the IoT Hub for

the device. There isn’t any deployment information associated with the device yet,

but the device should have connected to the IoT Hub successfully. You can see an

example of this by selecting the IoT Hub instance in the Azure portal and then selecting

your device. The module listing at the bottom of the blade should look similar to the

information in Figure 3-28. You can see the runtime status for the edgeAgent module is

running, but there are no other running modules listed. Once you specify a deployment

manifest for the device, other modules will be listed here and the status of each module

will be reported. For now, if your device’s information looks like Figure 3-28, you are in

good shape.

Chapter 3 Azure IoT Edge Development Environment

http://yaml.org

78

As a point of reference, an entire config.yaml is included in Listing 3-11. There are

some helpful comments included in the file that should help you become more familiar

with the overall structure, format, and content of the file.

Listing 3-11.  Example IoT Edge config.yaml file

##

IoT Edge Daemon configuration

##

#

This file configures the IoT Edge daemon. The daemon must be

restarted to pick up any configuration changes.

#

Note - this file is yaml.

Learn more here: http://yaml.org/refcard.html

#

##

##

Provisioning mode and settings

##

#

Configures the identity provisioning mode of the daemon.

#

Supported modes:

manual - using an iothub connection string

dps - using dps for provisioning

#

##

Figure 3-28.  IoT Hub information for the newly configured device

Chapter 3 Azure IoT Edge Development Environment

79

provisioning:

 source: "manual"

 device_connection_string: "<DEVICE CONNECTION STRING HERE>"

provisioning:

source: "dps"

global_endpoint: "https://global.azure-devices-provisioning.net"

scope_id: "{scope_id}"

registration_id: "{registration_id}"

##

Certificate settings

##

#

Configures the certificates required to operate the IoT Edge

�runtime as a gateway which enables external leaf devices to # securely

communicate with the Edge Hub. If not specified,

the required certificates are auto generated for quick start

scenarios which are not intended for production

environments.

#

Settings:

device_ca_cert - path to the device ca cert and its chain

device_ca_pk - path to the device ca private key file

trusted_ca_certs - path to a file with the trusted CA

certificates required for Edge module

communication

#

##

certificates:

device_ca_cert: "<PATH TO DEVICE CA CERTIFICATE HERE>"

device_ca_pk: "<PATH TO DEVICE CA PRIVATE KEY HERE>"

trusted_ca_certs: "<PATH TO TRUSTED CA CERTIFICATES HERE>"

Chapter 3 Azure IoT Edge Development Environment

80

##

Edge Agent module spec

##

#

Configures the initial Edge Agent module.

#

The daemon uses this definition to bootstrap the system.

The Edge Agent can then update itself based on the Edge

Agent module definition present in the deployment in

IoT Hub.

#

##

agent:

 name: "edgeAgent"

 type: "docker"

 env: {}

 config:

 image: "mcr.microsoft.com/azureiotedge-agent:1.0"

 auth: {}

##

Edge device hostname

##

#

Configures the env variable 'IOTEDGE_GATEWAYHOSTNAME'

injected into modules. Regardless of case the hostname is

specified below, a lower case value is used to configure the

Edge Hub server hostname as well as the environment variable

specified above.

#

It is important to note that when connecting downstream

devices to the Edge Hub that the lower case value of this

hostname be used in the 'GatewayHostName' field of the

device's connection string URI.

##

Chapter 3 Azure IoT Edge Development Environment

81

hostname: "<ADD HOSTNAME HERE>"

##

Connect settings

##

#

#

Configures URIs used by clients of the management and

workload APIs

management_uri - used by the Edge Agent and 'iotedge'

CLI to start, stop, and manage modules

workload_uri - used by modules to retrieve tokens and

certificates

#

The following uri schemes are supported:

http - connect over TCP

#

##

connect:

 management_uri: "http://<GATEWAY_ADDRESS>:15580"

 workload_uri: "http://<GATEWAY_ADDRESS>:15581"

##

Listen settings

##

#

Configures the listen addresses for the daemon.

management_uri - used by the Edge Agent and 'iotedge'

CLI to start, stop, and manage modules

workload_uri - used by modules to retrieve tokens and

certificates

#

The following uri schemes are supported:

http - listen over TCP

#

##

Chapter 3 Azure IoT Edge Development Environment

82

listen:

 management_uri: "http://<GATEWAY_ADDRESS>:15580"

 workload_uri: "http://<GATEWAY_ADDRESS>:15581"

##

Home Directory

##

#

This configures the home directory for the daemon.

#

##

homedir: "C:\\ProgramData\\iotedge"

##

Moby Container Runtime settings

##

#

uri - configures the uri for the container runtime.

network - configures the network on which the containers

will be created.

#

##

moby_runtime:

 uri: "npipe://./pipe/docker_engine"

network: "nat"

�Summary
In this chapter, we installed and configured all the tools necessary to develop and deploy

IoT Edge solutions. We discussed the differences between VS Code and Visual Studio

and walked through setting up both IDEs for IoT Edge development. In the next chapter,

we will begin creating our first IoT Edge solution.

Chapter 3 Azure IoT Edge Development Environment

83
© David Jensen 2019
D. Jensen, Beginning Azure IoT Edge Computing, https://doi.org/10.1007/978-1-4842-4536-1_4

CHAPTER 4

Hello Edge
At this point in your edge computing journey, you have learned what it takes for your

organization to start entertaining the edge computing paradigm, you have learned about

the core concepts that enable and support the Azure IoT Edge platform, and you have

configured your own development environment to begin building and deploying your

edge solutions. But you have not actually built any code yet. In this chapter, we will walk

through how to build your first edge solution, how to deploy it to your local development

machine (which should be configured as an edge device at this point), and the iterative

development process required to update the edge solution configuration. If you have not

configured your development machine using the instructions in Chapter 3, this would be

a good time to take care of that.

Once you have your development environment setup and ready, creating edge

solutions is a straightforward process, in either VS Code or Visual Studio. As we will see,

the IDEs scaffold a basic but functioning edge solution template that we can customize

and modify.

As we walk through these examples, I will illustrate how to perform each task first in

VS Code and then in Visual Studio. As of this writing, the VS Code tooling is more mature

and handles more tasks than the tooling in Visual Studio. But the teams at Microsoft are

constantly working to achieve feature parity in both IDEs. But, since there is a fairly large

gap in tooling functionality at this point, I will highlight the differences between the two

experiences.

84

�Create a Solution Using VS Code
To create an edge solution using VS Code,first open VS Code, then press Ctrl+Shift+P

to open the command window, as shown in Figure 4-1.

Figure 4-1.  VS Code command window

In the command window, you can start typing “edge” and all “edge” related

commands will display, as shown in Figure 4-2.

Chapter 4 Hello Edge

85

In this list, select the “New IoT Edge Solution” and press Enter. The tooling will then

prompt you for the needed information: the solution root folder, the solution name, the

edge module template to use during the initial solution scaffolding (we will be using the

C# module template), the module name, and the address of the local docker registry you

previously set up. Once you have entered all the information, your initial solution should

look like the solution in Figure 4-3.

Figure 4-2.  Azure IoT Edge related commands

Chapter 4 Hello Edge

86

In this initial solution, the files and folders are organized in the recommended

structure. It looks like the structure shown in Figure 4-4.

Figure 4-3.  Initial VS Code edge solution

modules directory

deployment.template.json

Solution Root

Module1Name directory

Module2Name directory

.csproj
Dockerfile.*
module.json
Program.cs

Figure 4-4.  Recommended edge solution structure

Chapter 4 Hello Edge

87

As you look at the files in the initial solution, there are some files that should look

familiar and some files that you likely have not seen before. Let’s walk through a quick

explanation of these files to understand how each file is used in the edge solution

development process.

•	 deployment.template.json – The JSON-based template that contains

all the required information for the edge runtime to download the

Docker images, create the edge container modules and start them.

It contains information about each edge module that should be

deployed to the edge device, including the container registry and

registry credentials if needed. Additionally, any Docker container

create options are listed as well. Finally, any IoT Edge module-specific

settings that are part of the module twin are included as well. Keep in

mind that this file is merely used to generate the deployment.json file

(not shown yet), which is the actual deployment instruction file.

•	 Dockerfile.* – If you have used Docker, then you should be familiar

with Dockerfiles. The initially scaffolded solution includes several

flavors of files for use with Docker.

•	 Dockerfile.amd64 – Dockerfile for Linux-based x86/x64

processors

•	 Dockerfile.amd64.debug – Dockerfile for Linux-based x86/

x64 processors that includes debug information and a separate

container for the debugger

•	 Dockerfile.arm32v7 – Dockerfile for Linux-based ARM

processors

•	 Dockerfile.windows-amd64 – Dockerfile for Windows IoT Core

machines for x86/x64 processors

•	 FirstEdgeModule.csproj – The .csproj file based on .Net Core for

the module. The name will vary, based on the module name you

supplied during the scaffolding process. This file should be familiar to

you if you have done any .Net development before now.

Chapter 4 Hello Edge

88

•	 module.json – A file that simplifies the interaction between the edge

development environment and the Docker/build environment. This

file simply lists all the available Docker build options and the IoT

Edge plugin in VS Code inspects that file, when you issue a build

command and prompts you to select the configuration you want

to build. It then invokes the appropriate Docker build (and push)

commands to complete the task.

•	 Program.cs – Contains the entry point for the C# module template

(main()). The initial version of this file contains logic to register event

handlers for the edge runtime.

�Create a Solution Using Visual Studio
In this section, we will walk through the corresponding steps in Visual Studio to create

our first edge solution. As a reminder, if you have not gone through the Visual Studio

configuration steps in the previous chapter, please do that now. Once Visual Studio has

been correctly configured, to create a solution in Visual Studio, select File ➤ New Project

to launch the New Project dialog and select the Azure IoT Edge template, as shown

in Figure 4-5.

Chapter 4 Hello Edge

89

Then, select the module template you need to create, enter the required name and

Docker repository and press OK, as shown in Figure 4-6. As of this writing, the only

module template available in Visual Studio is C#.

Figure 4-5.  Azure IoT Edge project template in Visual Studio

Chapter 4 Hello Edge

90

Once the solution scaffolding has completed, the edge solution should look similar

to the structure shown in Figure 4-7.

Figure 4-6.  Edge module Visual Studio module template selection

Chapter 4 Hello Edge

91

The files are the same as what we saw in the solution scaffolded in VS Code, they are

just organized slightly differently in Visual Studio.

�IoT Hub Connection String
In VS Code, it’s helpful to connect the development environment to the IoT Hub that

you previously set up. This will allow you to easily deploy your edge solutions to a

device registered with the IoT Hub. This step is not required in Visual Studio, provided

you previously updated the Cloud Explorer add-in and have connected it to the Azure

subscription containing the IoT Hub you are working with.

To connect to the IoT Hub in VS Code, select the “Set IoT Hub Connection String”

option in the IoT Toolkit extension window, as shown in Figure 4-8.

Figure 4-7.  Initial Visual Studio edge solution

Chapter 4 Hello Edge

92

This will open a command window prompt, into which you can paste the IoT

connection string.

Note R emember that there are two types of connection strings in the IoT Hub
world: connection strings for the IoT Hub instance and connection strings for the
device. The connection string referred to in this section is the IoT Hub instance
connection string, not the device connection string.

Once you have correctly entered the service connection string, the list of devices

should appear in the window.

�Exploring the Solution Actions
Now that we have a general understanding of the initial project artifacts and the overall

structure, we will take a more detailed look at each of the most important files and

explain how to build upon the template to create a customized edge solution. All of the

artifacts I have mentioned up to this point can be grouped into one of three actions:

develop, build, or deploy. Develop includes all the C# code (or another language if you

are working with another module template). Build includes the Docker files and other

files used to assist in creating the Docker images. And finally, deployment includes the

files used to take the Docker images, describe the inter-container message interactions

and deploy that manifest to a target edge device. A high-level interaction between the

groups of files can be seen in Figure 4-9.

Figure 4-8.  Set IoT Hub connection string in VS Code

Chapter 4 Hello Edge

93

�Develop
Let’s begin to examine the Develop activity by looking into the Program.cs file that was

created for us as part of the initial solution. As stated earlier, this file defines the entry

point for each module you will develop. There is a static void Main(string[] args)

method just as in other C# applications. An example is shown in Listing 4-1.

Listing 4-1.  Example Main() method

static void Main(string[] args)

{

 Init().Wait();

 // Wait until the app unloads or is cancelled

 var cts = new CancellationTokenSource();

 AssemblyLoadContext.Default.Unloading +=

 (ctx) => cts.Cancel();

 Console.CancelKeyPress += (sender, cpe) => cts.Cancel();

 WhenCancelled(cts.Token).Wait();

}

This method is mainly responsible for invoking the asynchronous Init() method,

registering a cancelation event handler and then waiting for a cancelation event

(shutdown) to occur. The Init() method is shown in Listing 4-2.

Listing 4-2.  Example Init() method

static async Task Init()

{

 AmqpTransportSettings amqpSetting =

 new AmqpTransportSettings(TransportType.Amqp_Tcp_Only);

 ITransportSettings[] settings = { amqpSetting };

Develop

.csproj file

.cs files

.config files

Build

Dockerfile files
module.json

Deploy

deployment.template.json
deployment.json

Figure 4-9.  Edge solution artifact actions

Chapter 4 Hello Edge

94

 // Open a connection to the Edge runtime

 ModuleClient moduleClient =

 await ModuleClient.CreateFromEnvironmentAsync(settings);

 await moduleClient.OpenAsync();

 Console.WriteLine("IoT Hub module client initialized.");

 // Register callback to be called when a message

 // is received by the module

 await moduleClient.SetInputMessageHandlerAsync("input1",

 PipeMessage, moduleClient);

}

�ModuleClient

In the Init method shown in Listing 4-2, we start to see some of the edge-specific code

that wires up the module to the edge runtime. First, notice the line where an instance of

the ModuleClient class is created. ModuleClient is the primary API used to interact with

the edge runtime. There are several static method options available to create an instance

of the class. The one shown in Listing 4-2 supplies the transport settings that depend on

environment variables in the edge runtime for the remaining values. There are several

possible ways to create a ModuleClient instance. But, all of the possible options are in one of

three overloaded methods: Create, CreateFromConnectionString, CreateFromEnvironment.

•	 Create: Accepts some combination of the following parameters that

are explicitly passed into the constructor.

•	 Hostname: The fully qualified DNS name of the IoT Hub.

•	 authenticationMethod: The authentication method used for this

connection. Refer to the section on Authentication Methods later

in this chapter.

•	 gatewayHostname: The fully qualified DNS name of the gateway

(in the case where you have a hierarchy of edge devices and some

edge devices serve as gateways for other edge devices).

•	 transportSettings: A prioritized list of the transport types and

their settings. Refer to the section on transport settings later in

this chapter.

•	 transportType: An enumeration with the values shown in Table 4-1.

Chapter 4 Hello Edge

95

•	 CreateFromConnectionString: Accepts the device connection string

along with some combination of other values. If values are not

supplied, the default values are used.

•	 connectiongString: The device connection string from the device

info in the IoT Hub.

•	 transportSettings: A prioritized list of the transport types and

their settings. Refer to the section on transport settings later in

this chapter.

•	 transportType: An enumeration with the values shown in Table 4-1.

•	 CreateFromEnvironment: Accepts transport settings and relies

on the remainder of the required information to be retrieved from

environment variables. The values of the environment variables are

populated from the config.yaml described in earlier chapters.

•	 transportSettings: A prioritized list of the transport types and

their settings. Refer to the section on transport settings later in

this chapter.

•	 transportType: An enumeration with the values shown in Table 4-1.

Once you have created an instance of the ModuleClient, you can begin to interact

with it and the messages being sent and received. The ModuleClient has a few groups

of methods. There are methods that handle receiving and acknowledging messages

Table 4-1.  Transport Types

Transport Type Description

Http1 HTTP version 1 transport

Amqp Try AMQP over TCP first and fallback to AMQP over WebSocket if that fails

Amqp_WebSocket_Only AMQP over WebSockets only

Amqp_Tcp_Only AMQP over native TCP only

Mqtt Try MQTT over TCP first and failback to MQTT over WebSocket if that fails

Mqtt_WebSocket_Only MQTT over WebSocket only

Mqtt_Tcp_Only MQTT over native TCP only

Chapter 4 Hello Edge

96

from the edgeHub message broker. There are methods that handle the opening and

closing of the underlying client connection. There are methods that handle registering

for events that occur in the edge runtime. And there are methods that handle retrieving

and updating the properties associated with the module in the module twin. Here is a

breakdown of these ModuleClient methods into their respective group.

•	 ModuleClient connection management

•	 OpenAsync: Opens the client transport layer

•	 CloseAsync: Closes the client transport layer

•	 Message receipt and acknowledgment

•	 AbandonAsync: Accepts a message and abandons the message to

be placed back on the module message queue

•	 CompleteAsync: Accepts a message and removes the message

from the module message queue

•	 Twin property retrieval and updating

•	 GetTwinAsync: Retrieves the module twin for the current module

•	 UpdateReportedPropertiesAsync: Pushes updated property

changes to the IoT Hub, which updates the reported values on the

module twin

•	 Message publishing to the edgeHub broker

•	 SendEventAsync: Accepts an output name and one message to

publish

•	 SendEventBatchAsync: Accepts an output name and a list of

messages to publish

•	 Runtime event handling

•	 SetConnectionStatusChangeHandler: Registers a callback that

is invoked when the module connection state changes. The

callback will be supplied a value for the current connection status

as well as the reason for the state change (retry expired, SAS

token expired, client closed, etc.).

Chapter 4 Hello Edge

97

•	 SetDesiredPropertyUpdateCallbackAsync: Registers a callback

that is invoked when a desired property state is updated in the

service.

•	 SetInputMessageHandlerAsync: Registers a callback that

responds to messages specified for a specific input. This is the

primary way to subscribe to an individual message topic.

•	 SetMessageHandlerAsync: Registers a default callback that

is invoked if no individual input handler is registered or if a

message is addressed to an input handler that does not exist.

•	 SetMethodHandlerAsync: Registers a callback for a specific,

named direct method invocation.

•	 SetMethodDefaultHandlerAsync: Registers a default callback that

is invoked if no individual method handler is registered.

�IoT Hub Authentication

As you saw in the description of the ModuleClient class, there are several constructors

that accept parameters called “authenticationMethod”. These instances are class

instances that implement IAuthenticationMethod from the Microsoft.Azure.Devices.

Client namespace. There are several options you can choose from and it’s helpful to

understand the difference between the various options, to ensure you’re picking the

correct implementation. Before we go into detail on the different method options, let’s

review a couple of concepts that relate to IoT Hub security in general.

There are three main types of device security used in IoT Hub: symmetric keys, X.509

certificates, TPM (trusted platform module) chips. Within the symmetric key option,

there are two sub-options: device level keys (generated when the device is added to the

IoT Hub) and SAS policy keys. SAS policies allow a user to define specific permissions

associated with a key. Examples of out-of-the-box SAS policies are:

•	 Service: Allows the service connect permission (sending and

receiving messages on the service endpoints)

•	 Device: Allows the device connect permission (sending and receiving

messages on the device endpoints)

Chapter 4 Hello Edge

98

•	 RegistryRead: Allows the registry read permission (reading from the

device identity metadata registry)

•	 RegistryReadWrite: Allows the registry read and registry write

permissions (reading and updating the device identity metadata

registry)

•	 Iothubowner: Allows the device connect, service connect, registry

read and registry write permissions (all of the above actions)

In a canonical IoT scenario, the IoT Hub will have a set of keys for each device

registered with the service and a set of keys that relate to the SAS policies listed above.

However, in IoT Edge scenarios, there are additional keys generated. In addition to the

device-level keys, each IoT module has a set of keys. You might wonder why IoT Edge

devices could not just use the device-level security concepts as regular IoT devices.

Think about multiple departments within an organization that might need to build,

deploy and secure modules independent of each other. In a typical factory, there are

some controls that must be more secure than others. If a single IoT Edge device is

deployed to a factory, it is possible for that one edge device to be connected to multiple

factory machines or multiple inputs on the same machine. In this case, there could be

multiple modules, each connected to a separate input. In this scenario, one department

might need to secure one input differently from another. Module-level keys allow this

capability.

One final concept to be aware of is the concept of tokens. Security tokens in the

context of Azure IoT imply a time-constrained permission. That is, the permission will

expire at some point. The previous security options do not expire. If you have the key

or the certificate, you can access the resource. But, those keys can be used to generate

tokens that do expire.

All of that is foundational to the edge device authentication methods available. There

are eight different IAuthenticationMethod options you can instantiate and supply to the

ModuleClient constructor. Here is a brief description of each.

Chapter 4 Hello Edge

99

�Transport Settings

Transport settings are used to control the communication protocol between the device

and the IoT Hub endpoints. The supported protocols are AMQP, MQTT, and HTTP. The

transport settings are used in conjunction with the TransportType enumeration listed

in Table 4-1. The TransportType values control the behavior of how each protocol is

managed. The available implementations of ITransportSettings are listed in Table 4-3.

Table 4-2.  Device authentication methods

Authentication Method Description

DeviceAuthenticationWithRegistrySymmetricKey Uses the device-level symmetric key

Required: deviceID, key

DeviceAuthenticationWithSharedAccessPolicyKey Uses a shared access policy key

Required: deviceID, key, policy name

DeviceAuthenticationWithToken Uses a generated shared access token

Required: deviceID, token

DeviceAuthenticationWithX509Certificate Uses an X.509 certificate

Required: deviceID, certificate

DeviceAuthenticationWithTpm Uses SAS token from TPM interface

Required: deviceID, TPM provider

Optional: TTL in seconds, TTL buffer %

ModuleAuthenticationWithTokenRefresh Uses SAS token, allows token refresh

Required: deviceID, moduleID

Optional: TTL in seconds, TTL buffer %

ModuleAuthenticationWithRegistrySymmetricKey Uses module-level symmetric key

Required: deviceID, moduleID, key

ModuleAuthenticationWithToken Uses a generated shared access token

Required: deviceID, moduleID, token

Chapter 4 Hello Edge

100

�Message Handler

To further illustrate the Develop actions, let’s look at the implementation provided in the

initial project that was scaffolded earlier. In Listing 4-2, the last line registers an input

message handler using the delegate PipeMessage. The implementation of PipeMessage

is shown in Listing 4-3.

Listing 4-3.  Example input message handler

static async Task<MessageResponse> PipeMessage(Message message, object

userContext)

{

 int counterValue = Interlocked.Increment(ref counter);

 var moduleClient = userContext as ModuleClient;

 if (moduleClient == null)

 {

 throw new InvalidOperationException("UserContext " +

 "doesn't contain expected values");

 }

 byte[] messageBytes = message.GetBytes();

 string messageStr = Encoding.UTF8.GetString(messageBytes);

 Console.WriteLine($"Received message: {counterValue}, " +

 Body: [{messageString}]");

 if (!string.IsNullOrEmpty(messageString))

 {

 var pipeMessage = new Message(messageBytes);

 foreach (var prop in message.Properties)

Table 4-3.  Valid TransportSettings and TransportTypes

Transport Setting Valid TransportType Options

AmqpTransportSettings Amqp, Amqp_Tcp_Only, Amqp_WebSocket_Only

Http1TransportSettings Http1

MqttTransportSettings Mqtt, Mqtt_Tcp_Only, Mqtt_WebSocket_only

Chapter 4 Hello Edge

101

 {

 pipeMessage.Properties.Add(prop.Key, prop.Value);

 }

 await moduleClient.SendEventAsync("output1", pipeMessage);

 Console.WriteLine("Received message sent");

 }

 return MessageResponse.Completed;

}

In this example, the edge runtime supplies the message to the event handler and

the event handler essentially creates a copy of the message and then publishes the new

message to the output1 named output. The named outputs do not have to be defined

anywhere. But, keep in mind any name that is specified in these output event handlers

must match the name specified in any routes that are intended to publish to this input.

As we wrap up this introduction on the Develop actions in an edge solution,

there is one mindset that is helpful to remember when building edge solutions. Edge

development is primarily event driven. There are a few cases where it’s not, but almost

everything you develop for an edge solution will involve defining event handlers to

process incoming events or defining output event handlers to publish an event. So,

understanding the available methods on the ModuleClient class to work with the events

is foundational in your journey to master edge solution development. Let’s move on to

discuss how to build an edge solution.

�Build
Building an edge solution is a different experience than the typical experience of running

and debugging within the IDE. Because an edge solution is based on Docker containers,

the container images must first be built and pushed to a container registry. Then, a

deployment manifest is sent to a device that pulls those images to the local device,

instantiates the containers and wires them together. In this scenario, the “build” step is

much more disconnected from the “run” (deploy) step than most developers are used

to. In Visual Studio, VS Code or Eclipse, we are used to building, running, and launching

an app all with the single press of a button. You will have to adjust, but there are some

dev tools starting to emerge that make the build, deploy, and debug tasks much more

approachable.

Chapter 4 Hello Edge

102

You may have noticed the Dockerfile variants that were generated as part of the

initial solution creation. They may seem appropriate, given the fact that you know edge

development is based on Docker and containers. But, the module.json file is probably

new to you, leaving you wondering what it is and how to use it. You can think of the

module.json file as one that contains a list of build configurations (Dockerfiles). So,

module.json is really a wrapper around any Dockerfiles that are part of the module. You

can see how this works if you right click the module.json in the edge solution you just

created and select “Build IoT Edge Module Image” option. An example of this is shown

in Figure 4-10.

Figure 4-10.  Build module using module.json

Chapter 4 Hello Edge

103

After you select the option, you will see the command window (in VS Code) prompt

you to select a configuration to build. And, you should notice that the options listed

are built using the of names of the "platforms" section of the module.json file. This is

shown in Figure 4-11.

Figure 4-11.  Build options command prompt

The only restriction for the platforms section is that it must be valid JSON. Which

means if you have several Dockerfiles and need to name them something meaningful

to your process or team, you have the freedom to rename those labels. You may also

have multiple values point to the same Dockerfile if you need that flexibility. Think of

the platforms section as a list of the valid build configurations you need to support.

When you select one of the options to build, the VS Code tooling will initiate the docker

commands to complete a docker build using the referenced Dockerfile.

Additionally, if you select the “Build and Push IoT Module Image” option from the

menu in Figure 4-10, the VS Code tooling will not only build the image, it will tag the

image with the value listed as the repository value and push the image to that repository.

So, in the example shown in Figure 4-11, after a successful image build of the amd64

configuration, the image would be tagged as localhost:5000/firstedgemodule:0.0.1-

amd64 and pushed to the local repository. The pattern for the tag value is shown in

Listing 4-4, which shows the values from the module.json JSON structure:

Listing 4-4.  Docker tag format from module.json properties

{repository}:{tag.version}-{tag.platform}

Chapter 4 Hello Edge

104

Now, let’s briefly look at these same commands using the Visual Studio tooling. In

Visual Studio, the context menus are connected to the IoT Edge project (.iotedgeproj

extension). When you right click that project, you will see the menu displayed in

Figure 4-12.

Figure 4-12.  IoT Edge build menu in Visual Studio

One of the first things to observe is that the tooling is expecting a certain set of

platforms in the module.json file. You cannot rename those platforms as you can in VS

Code. Another difference to be aware of in Visual Studio is that when you build using the

tooling, you are dealing with the IoT Edge project, not the individual modules. The side

Chapter 4 Hello Edge

105

of effect of this is that you must include any modules you want to build into that project

first. If you aren’t sure if your module will be built, you can expand the Modules node in

the Solution Explorer, as shown in Figure 4-13.

Figure 4-13.  Module list in IoT Edge project

There are options on the context menu to add edge projects to this orchestration

project and you can remove projects as well if needed. The end result of coordinating the

build process through a single project is that, for any single build operation, all projects

in the list of this IoT Edge project must be built with the same configuration. For example,

if there are two projects in your edge solution and you want to build a debug version for

one of them, you will have to first remove the project you do not want to debug, then

build the debug image, using the context menu options shown in Figure 4-12.

All of this inflexibility in the Visual Studio tooling is likely due to how immature it

is. At the time of this writing, the roadmap for this tooling is not clear. But Microsoft is

working toward feature parity between VS Code and Visual Studio.

�Deploy
The third action supported in an edge solution is deploying the code to an edge device.

Just to be clear on the prerequisites for the deploy activities, let’s review what must be

completed in order to deploy. You must have coded and developed at least one module

and built it into a Docker container image. Additionally, you must have pushed that

image to a container registry, either a hosted container registry or a local registry. Once

you have the images ready, you are ready to assign the deployment manifest to an edge

device. When the edge runtime has the deployment manifest, it will handle pulling the

images to the device, starting the containers and managing the health of the containers.

The deployment manifest file is named deployment.json and it is generated

from the deployment.template.json file that is included in the initial edge solution.

Chapter 4 Hello Edge

106

Generating the manifest is a single easy step using the tooling in either VS Code or Visual

Studio. An example generating the manifest in VS Code is shown in Figure 4-14.

Figure 4-14.  Generate deployment manifest in VS Code

The result of this is a deployment.json file in the config directory of the solution

root directory. Now, let’s examine both the deployment template and the generated

deployment manifest files. You can click the deployment.template.json file to view the

contents, but it might be easier to understand the structure through a visualization. A

high-level view of the file can be seen in Figure 4-15.

Chapter 4 Hello Edge

107

The $edgeAgent and $edgeHub have specialized property sections in the manifest

and those sections must be understood to properly configure your edge device.

Tables 4-4 and 4-5 list the $edgeAgent and $edgeHub specific properties, respectively.

modulesContent

$edgeAgent $edgeHub FirstEdgeModule

properties.desired properties.desired properties.desired

One JSON node per module. Only
$edgeAgent and $edgeHub are required.

Each module has a properties section. The
$edgeAgent and $edgeHub modules have
unique sections to configure the run time.

Root level node.

runtime

systemModules

modules

routes Custom properties
specific to the module

The properties for $edgeAgent contain all
the required information to pull the

docker images to the edge device.

The properties for $edgeHub contain all
the information to create the inter-

module message routing.

The properties for all other modules are
defined by the developer and accessible

within the module code.

Figure 4-15.  Visual summary of the edge deployment manifest file

Table 4-4.  $edgeAgent properties

Property Name Description

runtime.type Must always be “docker.”

runtime.settings.minDockerVersion The minimum Docker version required for this deployment.

runtime.settings.loggingOptions The Docker logging options to use for the $edgeAgent

container.1

runtme.settings.registryCredentials The user name, password and address for any container

registries the run time needs to access. There can be one or

many sets of credentials.

systemModules.edgeAgent Module information defined in Table 4-6.

systemModules.edgeHub Module information defined in Table 4-6.

1To read more about the Docker logging options, visit https://docs.docker.com/config/
containers/logging/configure

Chapter 4 Hello Edge

https://docs.docker.com/config/containers/logging/configure
https://docs.docker.com/config/containers/logging/configure

108

Table 4-5.  $edgeHub Properties

Property Name Description

routes A list of name/value pairs of routes. The name of the route can be free form. The

value of the route must follow the route definition guidelines described in the

Core Concepts chapter.

Table 4-6.  Module Information JSON Structure

Property Name Description

type Must be “docker.”

status For the system modules ($edgeHub, $edgeAgent), it must be “running.”

For custom modules, it can be:

• �Stopped: After being deployed, the module will remain idle until

called upon to start by you or another module.

• �Running: This is the default option. The module will start running

immediately after being deployed.

restartPolicy For the system modules ($edgeHub, $edgeAgent), it must be “always.”

For custom modules, it can be:

• Never: The module never restarts if it shuts down for any reason.

• �On-failed: The module restarts if it crashes, but not if it shuts down

cleanly.

• �On-unhealthy: The module restarts if it crashes or returns an unhealthy

status. It’s up to each module to implement the health status function.

• Always: The module always restarts if it shuts down for any reason.

settings.image The URI to the module image.

settings.

createOptions

Stringified JSON containing the options for the creation of the container.2

As you begin to look in your solution’s deployment.template.json file, you should

see a JSON segment that looks like the code in Listing 4-5.

2To read about all the available create options, visit https://docs.docker.com/engine/api/
v1.32/#operation/ContainerCreate

Chapter 4 Hello Edge

https://docs.docker.com/engine/api/v1.32/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.32/#operation/ContainerCreate

109

Listing 4-5.  Module information in deployment.template.json

"FirstEdgeModule": {

 "version": "1.0",

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 "image": "${MODULES.FirstEdgeModule.amd64}",

 "createOptions": "{}"

 }

}

The entry for the module image location is a variable that maps to a build

configuration in the module.json file. When you generate the deployment manifest as

shown in Figure 4-14, any variables that exist in the deployment.template.json file

will be replaced with the literal values from the module.json file into the generated

deployment.json file. For example, in the code shown in Listing 4-5, if the corresponding

module.json file looks like the code in Listing 4-6, the resulting entry in the generated

deployment.json file would be localhost:5000/firstedgemodule:0.0.1-amd64.

Listing 4-6.  module.json file

{

 "$schema-version": "0.0.1",

 "description": "",

 "image": {

 "repository": "localhost:5000/firstedgemodule",

 "tag": {

 "version": "0.0.1",

 "platforms": {

 "amd64": "./Dockerfile.amd64",

 "amd64.debug": "./Dockerfile.amd64.debug",

 "arm32v7": "./Dockerfile.arm32v7",

 "windows-amd64": "./Dockerfile.windows-amd64"

 }

 },

Chapter 4 Hello Edge

110

 "buildOptions": []

 },

 "language": "csharp"

}

The tooling uses the repository and the specified build platform in module.json to

construct the image URI for deployment.json. Variable substitutions are also allowed in

module.json. Substitution of variables is most helpful when build CI/CD pipelines for

IoT Edge solutions.

Once you have a generated deployment manifest, right click the file in VS Code and

you will see options similar to Figure 4-16.

Figure 4-16.  Create deployment options

Chapter 4 Hello Edge

111

For now, select the option to create a deployment for a single device. VS Code

will prompt you to select a device from the devices connected to the configured IoT

Hub. Creating a deployment at scale will be discussed in the chapter on the Device

Provisioning Service. When you select the device to target for the deployment, the IoT

Hub translates the single deployment manifest file into module twins for each of the

modules listed in the manifest, including the twin for edgeHub and edgeAgent, and

updates the twins accordingly. Once the twins have been updated, the edge runtime is

notified there are changes and it pulls down the twin information and updates, creates,

or removes modules as needed, based on the module name and version number.

The tooling support for edge deployment in Visual Studio is slightly different than

VS Code. To generate the deployment manifest in Visual Studio, right click the IoT Edge

Project in the solution explorer, as shown in Figure 4-17.

Chapter 4 Hello Edge

112

This generates the deployment.json file to the same ./config directory, but the file

is not visible in the solution explorer as it was in VS Code. To deploy this generated file to

a single device, navigate to the device in the Cloud Explorer window and right click the

device, as shown in Figure 4-18.

Figure 4-17.  Generate deployment manifest in Visual Studio

Chapter 4 Hello Edge

113

When you select the Create Deployment option, Visual Studio will open up a File

Explorer window in the directory where generated manifest is stored. Simply select the

file and the tooling will enforce the same updates behind the scenes as VS Code.

�Running Your Solution
Now that you are familiar with the content of the edge solution and the main types

of actions you can perform using the tooling in either VS Code or Visual Studio, let’s

deploy our initial edge solution and verify that’s working. To do this, make sure you

have built each individual module image and pushed the image to a container registry

(localhost:5000 is a good place to start for local development). Additionally, make sure

you have generated the deployment manifest and then deploy that manifest to a single

device. Make sure that you target the device you set up in the previous chapter when you

configured your development environment. Figure 4-19 show the output from building

and pushing my custom module to the local Docker registry.

Note  Keep in mind that your container registry must be accessible from your
edge device. Otherwise, the edge runtime on the device will not be able to pull the
needed images. So, if you are pushing your images to the local Docker registry
(localhost:5000), you must use the edge runtime on the machine hosting that

Figure 4-18.  Create a single device deployment in Visual Studio

Chapter 4 Hello Edge

114

local registry. If you are deploying your edge solution to a different device from
your development machine, the container registry must be in a publicly available
location (Azure Container Registry or Docker Hub, for example).

Figure 4-20.  docker ps output

Figure 4-19.  VS Code output from building and pushing custom module

Make sure the edge runtime service is running. To check this, run one of the

following commands:

•	 Linux: sudo systemctl status iotedge

•	 Windows: Get-Service iotedge

Once you have assigned the deployment manifest to the edge device, the edge

runtime will start to pull the images and create Docker containers based on those

images. You can see what containers are currently running by running the command:

docker ps. If you are running the initial edge solution we have been working with

throughout this chapter, the output will look like the output in Figure 4-20.

You should see four running edge modules and a fifth line for the local registry if you

have it running. The Temperature Sensor module (tempSensor) is a module provided

by Microsoft that generates telemetry to test with. This eliminates the need to connect to

either a physical or virtual device to start handling messages and data. Additionally, the

Chapter 4 Hello Edge

115

C# module template we used in our first edge solution is ready to handle the telemetry

generated by this tempSensor module. To view this data, run the command in Listing 4-7.

Listing 4-7.  Viewing module output

docker logs -f tempSensor

The docker logs command displays the console output for the module specified.

The output for the tempSensor module looks like the sample in Listing 4-8.

Listing 4-8.  tempSensor output

Sending message: 238, Body: [{"machine":{"temperature":100.29815234851478,"

pressure":10.033966723248518},"ambient":{"temperature":21.250450821942859,"

humidity":26},"timeCreated":"2018-11-10T04:47:58.3126199Z"}]

Next, we can look at the output from our custom module, which is configured to

process the telemetry generated from the tempSensor module. To view its’ output, run

the command in Listing 4-7, but specify the name of your module (FirstEdgeModule),

rather than tempSensor. You should see output similar to what is shown in Listing 4-9.

Listing 4-9.  FirstEdgeModule output

Received message: 315, Body: [{"machine":{"temperature":102.57867492541149,

"pressure":10.293773092768397},"ambient":{"temperature":21.076086747262668,

"humidity":25},"timeCreated":"2018-11-10T04:54:26.7116022Z"}]

Received message sent

Just to refresh your memory the code that is generating this output is shown in

Listing 4-10.

Listing 4-10.  Custom event handler method

static async Task<MessageResponse> PipeMessage(Message message, object

userContext)

{

 int counterValue = Interlocked.Increment(ref counter);

 var moduleClient = userContext as ModuleClient;

 if (moduleClient == null)

Chapter 4 Hello Edge

116

 {

 throw new InvalidOperationException("UserContext doesn't"+

 " contain expected values");

 }

 byte[] messageBytes = message.GetBytes();

 string msgString = Encoding.UTF8.GetString(messageBytes);

 Console.WriteLine($"Received message: {counterValue}, " +

 Body: [{messageString}]");

 if (!string.IsNullOrEmpty(messageString))

 {

 var pipeMessage = new Message(messageBytes);

 foreach (var prop in message.Properties)

 {

 pipeMessage.Properties.Add(prop.Key, prop.Value);

 }

 await moduleClient.SendEventAsync("output1", pipeMessage);

 Console.WriteLine("Received message sent");

 }

 return MessageResponse.Completed;

}

This simple method accepts the message from the generated telemetry module,

prints out that message, then creates a new message, copying all of the properties from

the original message. Then, it sends that message to the output1 named address. Refer

to the previous section on routing if you need to be reminded. Lastly, the routes that

were added to the initial solution as part of the scaffolding process are shown in the

Listing 4-11.

Listing 4-11.  Initial deployment manifest routes

"routes": {

"FirstEdgeModuleToIoTHub":

"FROM /messages/modules/FirstEdgeModule/outputs/*

INTO $upstream",

Chapter 4 Hello Edge

117

"sensorToFirstEdgeModule":

 "FROM /messages/modules/tempSensor/outputs/temperatureOutput

 INTO

 BrokeredEndpoint(\"/modules/FirstEdgeModule/inputs/input1\")"

}

As a quick refresher, the sensorToFirstEdgeModule route sends messages coming

from the temperatureOutput in the tempSensor module and sends those messages to

input1 in the FirstEdgeModule module. The event handler for input1 was registered

to be the PipeMessage method shown in Listing 4-10. The FirstEdgeModuleToIoTHub

route takes the messages sent to any output of the FirstEdgeModule and routes those

messages to the IoT Hub ($upstream).

�Summary
In this chapter, we looked at how to create an initial edge solution using the tooling

in both Visual Studio and VS Code. We examined the parts of the initially scaffolded

solution, including the custom C# code, the module.json file, and both the deployment.

template.json and deployment.json files. We discussed the three main activities

the development tooling enables – develop, build, and deploy – and discussed the

related steps to each one of those activities. Finally, we looked at how to deploy the

edge solution, verify it is running, and look at the module output in the docker logs. In

the next chapter, we will take this knowledge and begin to make some changes to our

solution and learn how to debug edge solutions as well.

Chapter 4 Hello Edge

119
© David Jensen 2019
D. Jensen, Beginning Azure IoT Edge Computing, https://doi.org/10.1007/978-1-4842-4536-1_5

CHAPTER 5

Developing
and Debugging Edge
Modules
Hopefully, you’re starting to feel more comfortable understanding IoT Edge solutions,

modules, and their related code and configuration files. Last chapter, we took a detailed

look at how Azure IoT Edge solutions are structured, along with much of the tooling

involved to develop, build, and deploy edge solutions and modules. In this chapter we

will further examine the development and debugging experience, using the tooling in

VS Code and Visual Studio and some command line utilities. The tooling we looked at

last chapter is a great start for creating, building, and deploying your edge solutions, but

there’s more to the development process than that. As an edge solution developer, you

need to be able to add additional modules and debug your solution. Fortunately, there

are some great tools we can leverage to help us with this process.

�Edge Development Process
As you gain experience in developing edge solutions, you will begin to see there are

several tasks that you do repeatedly. A common iterative development process is shown

in Figure 5-1.

120

This diagram illustrates the core actions we discussed in the last chapter and

how they feed each other during the development process. This dev/test process is

more involved than you may be used to when developing web apps, desktop apps,

or utility console apps. In those cases, you are able to run the code in a local runtime

environment, so running and testing your code changes are a simple “F5” press away. In

order to develop and test your edge solutions, you must make your code changes, then

you must build the container and push that container to a container registry. Finally,

after the container is in a container registry, you can deploy the container to the edge

device, where your testing must occur. This process holds true, even if the edge device

you’re testing on is your local development machine. This process is more cumbersome

and error-prone than we are used to when developing solutions. An immediate feedback

loop is key to developing software that is more bug-free. The edge development process

just described does not have a tight feedback loop and, as a result, has the potential to

introduce bugs.

However, there are some tools that are now available to help this process and make

it less cumbersome by speeding up the feedback loop. These tools are: Azure IoT Edge

Dev Tool and Azure IoT EdgeHub Dev Tool (a.k.a. the edge simulator). In the next two

sections, we will review both of these tools to demonstrate some ways they can help

simplify the edge dev/test process.

Figure 5-1.  Common edge development process

Chapter 5 Developing and Debugging Edge Modules

121

�Azure IoT EdgeHub Dev Tool
The first tool we will look at that is helpful in the edge development and debugging

process is the edge simulator, officially known as the Azure IoT EdgeHub Dev Tool. It

simulates the local edge runtime environment, without requiring an active connection

to an IoT Hub instance1 which also eliminates the requirement to publish deployment

manifests through IoT Hub. It also does not require us to push our edge module image

to a container registry. We do still have to build the edge module image, but it can

remain locally on our development machine. These are a few of the ways this simulator

tool simplifies the process of development and testing our modules before publishing

them. It is very useful for creating a test environment where we can isolate the testing

of our module code and not have to worry so much about the configuration of the edge

runtime environment and all of the other dependencies that must be in place for our

edge solutions to run properly.

When running the simulator from the command line, there are four different

commands you can use: setup, start, stop, and modulecred. We will discuss each of

these in this section.

Before you use the simulator, you must install it. The simulator utility is a python pip

package that can be installed using the command in Listing 5-1.

Listing 5-1.  Install edgeHub simulator

pip install --upgrade iotedgehubdev

In case this isn’t obvious, you must have python (2.7 or 3.5+, 3.5+ is recommended)

and pip installed in order to install this package. After you have those prerequisites

installed and you run the above command, you should see output similar to Listing 5-2.

Listing 5-2.  iotedgehubdev installation output

Collecting iotedgehubdev

 Using cached https://files.pythonhosted.org/...iotedgehubdev-0.5.0-py2.

py3-none-any.whl

Collecting ply (from jsonpath-rw->iotedgehubdev)

1�Your device must still exist in an IoT Hub instance to generate the security keys and
configuration strings associated with it.

Chapter 5 Developing and Debugging Edge Modules

122

 Using cached https://files.pythonhosted.org/.../ply-3.11-py2.py3-none-

any.whl

Collecting decorator (from jsonpath-rw->iotedgehubdev)

 Using cached https://files.pythonhosted.org/.../decorator-4.3.0-py2.py3-

none-any.whl

Installing collected packages: ply, decorator, jsonpath-rw, iotedgehubdev

Successfully installed decorator-4.3.0 iotedgehubdev-0.5.0 jsonpath-

rw-1.4.0 ply-3.11

This output has been abbreviated for readability. Additionally, you may see warnings

about the iotedgehubdev script being installed into a directory that is not on the PATH

environment variable. In order for you to easily access this tool from any context on

your development machine, I highly recommend adding that directory to your PATH

variable. Once you have completed these steps, you are ready to configure the simulator.

Configuring the simulator involves setting the device connection string so the simulator

knows what device it is simulating. To configure it, run the command in Listing 5-3.

Listing 5-3.  Configure the simulator

iotedgehubdev setup -c "<edge-device-connection-string>"

You must use double quotes around the edge device connection string. An easy way

to get the device connection string is to right click the device in the list of IoT devices in

the VS Code tooling and select “Copy Device Connection String” as shown in Figure 5-2.

Chapter 5 Developing and Debugging Edge Modules

123

You can also use the option at the bottom of Figure 5-2 to “Setup IoT Edge Simulator.”

This will automatically copy the connection string for the device and run the setup

command for it.

Keep in mind, the simulator utility is still in beta and might have some bugs.

If you run the setup command and see an error that looks similar to this: “ERROR:

Error: string length needs to greater than or equal to 1 and less than 64

characters.”, you can add a default value for the gateway argument (-g "target") and

that should resolve the issue. You should see the message: “Setup IoT Edge Simulator

successfully.”

Before we move on to actually running the simulator utility, let’s discuss the two

ways to interact with the simulator. The first way is to run the simulator in solution mode.

In this mode, you supply a deployment manifest (deployment.json) and let the utility

host the modules listed in your solution. This is helpful if you have a multi-module

solution and your testing involves messages being exchanged between the modules. This

option uses the modules listed in the deployment manifest and starts the containers,

Figure 5-2.  Copy device connection string

Chapter 5 Developing and Debugging Edge Modules

124

which will follow the normal startup process in the module. Any messages that are

created and sent through the edgeHub message broker, either from an attached device

or telemetry that is generated in the module (like the temperature sensor), will be sent

as normal. The benefit of running in solution mode is that no container registry or edge

runtime were required.

The second way to use the simulator is to run it in single module mode. In this mode,

only one module is hosted in the simulator and when you execute the start command,

you specify the “inputs” you want to expose through the simulator’s API (“input1”,

“input2”, etc.). In single module mode, a local HTTP endpoint is created that allows you

to send HTTP POST messages to it. These messages are translated into device messages

and sent to your module through the inputs you specified, which allows your module

input message event handler to execute as if a message was received from the edgeHub

message broker. This can be extremely helpful when used with a tool like curl or Postman

so that you can save your test messages and easily replay them to your module to test

the module’s logic. Each of these simulation scenarios requires unique steps, so we will

examine each mode in the following sections.

�Solution Mode
To run the simulator in solution mode, use the command in Listing 5-4. The “-d” option

is used to specify the location of the deployment template file. Running the simulator in

solution mode is very similar to running the solution in the edge runtime. You simply

specify the deployment manifest and the simulator starts up all the modules and they all

run through the normal startup process.

Listing 5-4.  Simulator solution deployment command

iotedgehubdev start -d "<pathto/deployment.json>"

It might be helpful to think of solution mode as attach mode. In solution mode, since

the simulator starts the entire solution and the modules are running in their respective

containers as normal, the way you must debug your custom module is by attaching the

debugger, which is different from single module mode. We will look at how to use the

tooling to attach using the debugger later in this chapter.

Because the tooling must be able to attach to the debugger in the module containers,

you must specify the debug version of your module in the deployment.json file used.

Debug images are not the default image used in the template when the solution is

Chapter 5 Developing and Debugging Edge Modules

125

created, so you will have to change the modules, as shown in Listing 5-5. Additionally,

any images you build to use with the simulator must be built in debug mode.

Listing 5-5.  Debug module reference in deployment.template.json file

"FirstEdgeModule": {

 "version": "1.0",

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 "image": "${MODULES.FirstEdgeModule.amd64.debug}",

 "createOptions": "{}"

 }

}

�Single Module Mode
If running the simulator in solution mode can be thought of as attach mode, running

it in single module mode should be thought of as launch mode. When the simulator is

run in single module mode, the simulator does not automatically start your modules.

Instead, it starts two other modules. The two modules/containers are:

•	 edgeHubDev: Built from the mcr.microsoft.com/azureiotedge-hub

image. It is a replacement (dev) version of the edgeHub container

that can run on your local machine without the security agent.

This enables it to broker messages without the rigorous security

constraints in the regular edge runtime.

•	 Input: Built from the mcr.microsoft.com/azureiotedge-testing-

utility image. It creates an HTTP endpoint with a REST API that

accepts messages POSTed to its API and passes those messages on to

the edgeHubDev container.

Once these modules are up and running, your custom module code can be launched

and, using the configured module information, the edgeHubDev runtime will be invoked

as if it was running within the edge runtime, even though it is running natively on your

development machine (not in a container).

Chapter 5 Developing and Debugging Edge Modules

http://mcr.microsoft.com/azureiotedge-hub
http://mcr.microsoft.com/azureiotedge-testing-utility
http://mcr.microsoft.com/azureiotedge-testing-utility

126

To run the simulator in single module mode from the command line, use the “-i”

option to specify the inputs you want to test in your module (you can specify multiple

inputs as a comma-separated list). Two examples are shown in Listings 5-6 and 5-7.

Listing 5-6.  Simulator single module mode with single input and default port

iotedgehubdev start -i "input1"

Listing 5-7.  Simulator single module mode with two inputs and port number

specified

iotedgehubdev start -i "input1,input2" -p 55000

In Listing 5-6, the default of 53000 will be used with a single input exposed named

input1. The example shown in Listing 5-7 will use the port specified in the value of the

“-p” argument, 55000 and will expose two inputs names input1 and input2.

In single module mode, because the edge runtime is not in control of the

environment, there are some module requirements that are absent. One of these

requirements is a set of environment variables. The two environment variables required

by any module are: EdgeHubConnectionString and EdgeModuleCACertificateFile.

The values for these environment variables can be constructed using the modulecred

command line argument. modulecred is used to set the module connection string that

should be used when the simulator is started. To set the default module configuration,

run the command in Listing 5-8.

Listing 5-8.  modulecred set default configurations

iotedgehubdev modulecred

In the output, look for the segment “ModuleId=target”. This is the default Module ID

that is set when no module ID is specified as an argument to the modulecred command.

To configure the connection to use the module you want to test, run the command

shown in Listing 5-9.

Listing 5-9.  Set a module using modulecred

iotedgehubdev modulecred -m "<module name>"

Chapter 5 Developing and Debugging Edge Modules

127

The output of this command should contain a connection string with the value you

just specified in the "<module name>" parameter (include the double quotes) for the

ModuleId property and a path to the certificate file. An example of the output is shown in

Listing 5-10.

Listing 5-10.  modulecred command output

C:\Users\iotedgedev>iotedgehubdev modulecred -m "FirstEdgeModule"

EdgeHubConnectionString=HostName=<iothubname>.azure-devices.net;GatewayHost

Name=target;DeviceId=<deviceName>;ModuleId=FirstEdgeModule;SharedAccessKey=

<key>

EdgeModuleCACertificateFile=C:\ProgramData\iotedgehubdev\data\certs\edge-

device-ca\cert\edge-device-ca.cert.pem

If you are running these commands from the command line, you must set the

environment variables, but as we will see later, there are a few shortcuts to setting them

in the VS Code and Visual Studio tooling.

Once the simulator has been started and the two single mode test containers have

been started and the two environment variables have been set (using the values from the

modulecred command), you are ready to start your module. Your module must be started

natively as if it were running on your local machine, not in a container. This means you

must run the dotnet build command in the module directory to compile the bits.

After you have compiled your code, start the code inside the module (not the module

container), which is usually done by starting the debugger in an IDE. Once this is done,

you can pass a message to the configured module by supplying the input name and the

message body content to pass to the input in the module. An example invocation of the

utility is displayed in Listing 5-11.

Listing 5-11.  Example temperature telemetry simulator invocation

curl --header "Content-Type: application/json" --request POST --data

'{"inputName": "input1","data":"[{\"machine\":{\"temperature\":

100.29815234851478,\"pressure\":10.033966723248518},\"ambient\":

{\"temperature\":21.250450821942859,\"humidity\":26},\"timeC

reated\":\"2018-11-10T04:47:58.3126199Z\"}]"}' http://localhost:53000/api/

v1/messages

Chapter 5 Developing and Debugging Edge Modules

128

This example uses the curl command line tool to invoke the request, but any HTTP

client (like Postman) will work. The example shown in Listing 5-11 represents a message

that might be sent from the tempSensor module. A simpler message is shown in Listing 5-12,

which shows a simple “hello world” message.

Listing 5-12.  Example “hello world” simulator invocation

curl --header "Content-Type: application/json" --request POST --data

'{"inputName": "input1","data":"hello world"}' http://localhost:53000/api/

v1/messages

As you look at both of these example invocations, there are two parameters that

will change for your unique scenario. The first is the inputName value. This name must

match the name of the registered message handler you are trying to test (and one of the

input names that was supplied to the start command). Second, the value of the data

parameter should be the actual JSON message content that you want to pass to your

module. If you are running this on a Windows machine, you should surround the data

param value with double quotes and ensure the message payload (data content) is valid

JSON, with the embedded double quotes escaped. The examples shown must be run from

a Git bash window. The result of passing the command in Listing 5-11 or Listing 5-12 is

{"message":"accepted"}. This simply signifies that the message was correctly processed

through the simulator. There may be additional output from your code.

�Azure IoT Edge Dev Tool
The second tool we will look at is the Azure Edge Dev Tool. The Azure IoT Edge Dev Tool

is a python utility that is capable of performing much of the functionality discussed in

the previous chapter (and more) from the command line. With this tool, you can create

and manage all of the edge solution resources, including the Docker runtime and the

edge simulator as well as the Azure resources required for edge solutions, like IoT Hub.

Here is a partial list of the functionality it supports:

•	 Create new edge solutions

•	 Add new modules to existing edge solutions

•	 Monitor messages sent from the edge to IoT Hub

•	 Deploy edge solutions to an edge device

Chapter 5 Developing and Debugging Edge Modules

129

•	 Manage IoT Hub

•	 Manage the local Docker environment

•	 Manage the edge simulator

Listing 5-13 shows the usage output of the utility, which gives an idea of the tasks

that can be performed with this tool.

Listing 5-13.  iotedgedev usage output

Options:

 --version Show the version and exit.

 -h, --help Show this message and exit.

Commands:

 add Add a new module to the solution

 build Build the solution

 deploy Deploy solution to IoT Edge device

 genconfig Expand environment variables and placeholders in

 *.template.json and copy to config folder

 init Create a new IoT Edge solution and provision

 Azure resources

 log Open a new terminal window for EdgeAgent, EdgeHub

 and each Edge module and save to LOGS_PATH

 monitor Monitor messages from IoT Edge device to IoT Hub

 new Create a new IoT Edge solution

 push Push module images to container registry

 setup Setup IoT Edge simulator. This must be done

 before starting

 start Start IoT Edge simulator

 stop Stop IoT Edge simulator

 docker Manage Docker

 iothub Manage IoT Hub and IoT Edge devices

 simulator Manage IoT Edge simulator

 solution Manage IoT Edge solutions

Chapter 5 Developing and Debugging Edge Modules

130

Each of these commands has a set of subcommands that perform specific operations

under each of the command areas. The complete list2 is too long to include here, but one

example is the list of solution subcommands shown in Listing 5-14.

Listing 5-14.  iotedgedev solution subcommands

Usage: iotedgedev solution [OPTIONS] COMMAND [ARGS]...

 Manage IoT Edge solutions

Options:

 -h, --help Show this message and exit.

Commands:

 add Add a new module to the solution

 build Build the solution

 deploy Deploy solution to IoT Edge device

 e2e Push, deploy, start, monitor

 genconfig Expand environment variables and placeholders in

 *.template.json and copy to config folder

 init Create a new IoT Edge solution and provision

 Azure resources

 new Create a new IoT Edge solution

 push Push module images to container registry

�Getting Started with the IoT Edge Dev Tool
Now that you are aware of this command line tool, you need to know how to install it

and start using it. There are two ways to get started with the tool: (1) use a preconfigured

container image that already has all the required tools and dependencies installed or (2)

manually install all the required tools and utilities on your development machine. We

will walk through both options.

2�The complete list of commands and subcommands can be viewed at https://github.com/
Azure/iotedgedev/wiki/command-list.

Chapter 5 Developing and Debugging Edge Modules

https://github.com/Azure/iotedgedev/wiki/command-list
https://github.com/Azure/iotedgedev/wiki/command-list

131

�Using the Preconfigured Container

In case this wasn’t obvious, to run the preconfigured container, you must first install

Docker (refer to Chapter 3 for help on how to do that). Once you have Docker installed,

you will need to download the image from the Microsoft registry on Docker Hub using

this location: microsoft/iotedgedev. Once you have pulled the image, you can create

a container from that image and start it as you would any other container. Listing 5-15

shows a single command that pulls the image and starts the container.

Listing 5-15.  Docker command to start iotedgedev container

docker run -ti -v /var/run/docker.sock:/var/run/docker.sock -v <local

solution folder>:/home/iotedge microsoft/iotedgedev

This command not only starts the container but maps a local folder to a folder in

the container. In the place where you see the reference to the local folder, you need to

supply the path of the folder on your machine where you would like the generated edge

solution files to exist. When this command executes, the result will be a running Docker

container, and your cursor will be on container’s command prompt, ready to execute any

of the tool’s commands.

�Manually Installing the Requirements

If you would like to understand the ins and outs of the iotedgedev tool, including how to

set it up, this section will walk through the steps required to configure this tool manually,

from scratch. Here are the prerequisites that must be present on any device where you

want to run the tool:

•	 Docker (refer to Chapter 3 for installation help)

•	 Python 3.6+ and pip

•	 Azure CLI 2.0

•	 Azure CLI IoT extension

•	 For example: az extension add –name azure-cli-iot-ext

•	 For Linux machines only, Docker Compose

Chapter 5 Developing and Debugging Edge Modules

132

•	 Install edge module specific dependencies. If you’re creating a C#

module, you need the .Net runtime. If you’re creating a Java module,

you need the JDK and Maven. Here is a list of the module specific

requirements:

•	 C# – .NET Core SDK (2.1+ is recommended)

•	 Python – Git, Cookiecutter

•	 Node.js – Node.js, Yeoman, Azure IoT Edge Node.js module

generator

•	 Java – SDK, Maven

Once all of the required dependencies are installed, you are ready to install the tool

itself, using pip. Here is the most common example of how to install it: pip install -U

iotedgedev.

�IoT Edge Dev Tool Initial Commands
After the tool is installed, either in the prebuilt container or using the manual steps, there

are a few initialization commands that are helpful to be aware of. Here are a few of those

initial commands along with an explanation of what the command accomplishes.

•	 iotedgedev setup: This command sets up the IoT Edge Simulator

and must be run before starting the simulator.

•	 iotedgedev init: This command runs both iotedgedev new and

iotedgedev iothub setup, which creates a new edge solution and

sets up your Azure resources in a single command.

•	 iotedgedev build: This command builds all the module images that

need to be built in the edge solution.

•	 iotedgedev start: This command starts the simulator in either

solution mode or single module mode (for more details on this, refer

to the Azure IoT EdgeHub Dev Tool section).

Later in this chapter, we will walk through using the tool and experiment with a few

of the command line options that are helpful in different debugging scenarios.

Chapter 5 Developing and Debugging Edge Modules

133

�Using the IoT Edge Dev Tool
Now that you have the Dev Tool installed, let’s walk through how to create and manage

a solution using the tool. When using the iotedgedev command line tool, one of the first

things you need to do is create your local edge solution. The two most common ways

to do this are either the iotedgedev init command or the iotedgedev new command.

The new command creates and configures a new local edge solution with a reference to

the tempSensor module we have already seen as well as a custom module that consumes

messages from the tempSensor module. This command yields the same result as the

“new solution” commands we have already used in the VS Code and Visual Studio

tooling. An example of the output from the new command is shown in Listing 5-16.

Listing 5-16.  Output from iotedgedev new command

C:\Users\iotedgedev\edgesolution2>iotedgedev new .

===

======== CREATING AZURE IOT EDGE SOLUTION: . ========

===

==

== IOTEDGEDEV SOLUTION ADD FILTERMODULE --TEMPLATE CSHARP ==

==

=======================================

======== ENVIRONMENT VARIABLES ========

=======================================

Environment Variables loaded from: .env (C:\Users\iotedgedev\

edgesolution2\.env)

==

======== ADDING MODULE FILTERMODULE ========

==

===

=== DOTNET NEW -I MICROSOFT.AZURE.IOT.EDGE.MODULE ===

===

Chapter 5 Developing and Debugging Edge Modules

134

Restoring packages for C:\Users\iotedgedev\.templateengine\dotnetcli\

v2.1.403\scratch\restore.csproj...

 Installing Microsoft.Azure.IoT.Edge.Module 2.3.0.

 �Generating MSBuild file C:\Users\iotedgedev\.templateengine\dotnetcli\

v2.1.403\scratch\obj\restore.csproj.nuget.g.props.

 �Generating MSBuild file C:\Users\iotedgedev\.templateengine\dotnetcli\

v2.1.403\scratch\obj\restore.csproj.nuget.g.targets.

 �Restore completed in 390.43 ms for C:\Users\iotedgedev\.templateengine\

dotnetcli\v2.1.403\scratch\restore.csproj.

Usage: new [options]

Options:

 -h, --help Displays help for this command.

 -l, --list �Lists templates containing the specified name. If no

name is specified, lists all templates.

 -n, --name �The name for the output being created. If no name is

specified, the name of the current directory is used.

 -o, --output Location to place the generated output.

 -i, --install Installs a source or a template pack.

 -u, --uninstall Uninstalls a source or a template pack.

 --nuget-source Specifies a NuGet source to use during install.

 --type �Filters templates based on available types.

Predefined values are "project", "item" or "other".

 --force �Forces content to be generated even if it would

change existing files.

 -lang, --language �Filters templates based on language and specifies the

language of the template to create.

Templates Short Name Language Tags

--

Console Application console [C#], F#, VB Console

Class library classlib [C#], F#, VB Library

IoT Edge Module aziotedgemodule [C#], F# Console

Unit Test Project mstest [C#], F#, VB MSTest

NUnit 3 Test... nunit [C#], F#, VB NUnit

NUnit 3 Test Item nunit-test [C#], F#, VB NUnit

Chapter 5 Developing and Debugging Edge Modules

135

xUnit Test Project xunit [C#], F#, VB xUnit

Razor Page page [C#] ASP.NET

MVC ViewImports viewimports [C#] ASP.NET

MVC ViewStart viewstart [C#] ASP.NET

ASP.NET Core... web [C#], F# Empty

ASP.NET Core Web mvc [C#], F# MVC

Examples:

 dotnet new mvc --auth Individual

 dotnet new classlib --framework netcoreapp2.1

 dotnet new --help

===

= DOTNET NEW AZIOTEDGEMODULE -N FILTERMODULE -R

${CONTAINER_REGISTRY_SERVER}/FILTERMODULE =

===

The template "Azure IoT Edge Module" was created successfully.

Processing post-creation actions...

Running 'dotnet restore' on filtermodule...

 �Restoring packages for C:\Users\iotedgedev\edgesolution2\modules\

filtermodule\filtermodule.csproj...

 �Generating MSBuild file C:\Users\iotedgedev\edgesolution2\modules\

filtermodule\obj\filtermodule.csproj.nuget.g.props.

 �Generating MSBuild file C:\Users\iotedgedev\edgesolution2\modules\

filtermodule\obj\filtermodule.csproj.nuget.g.targets.

 �Restore completed in 2.9 sec for C:\Users\iotedgedev\edgesolution2\

modules\filtermodule\filtermodule.csproj.

Restore succeeded.

ADD COMPLETE

AZURE IOT EDGE SOLUTION CREATED

C:\Users\iotedgedev\edgesolution2>

Some of the output of the code in Listing 5-16 has been abbreviated for readability

sake, but the end result remains that the command indicates it completed successfully.

Chapter 5 Developing and Debugging Edge Modules

136

The iotedgedev init command does everything the iotedgedev new command

does but additionally creates and configures the Azure cloud resources that are required

for an end-to-end solution. Example output from the init command is shown in

Listing 5-17.

Listing 5-17.  Output from iotedgedev init command

==

= IOTEDGEDEV NEW . --MODULE FILTERMODULE --TEMPLATE CSHARP =

==

===

======== CREATING AZURE IOT EDGE SOLUTION: . ========

===

[duplicate output from iotedgedev "new" command removed]

AZURE IOT EDGE SOLUTION CREATED

===

======== IOTEDGEDEV IOTHUB SETUP --UPDATE-DOTENV ========

===

================================

======== AUTHENTICATION ========

================================

Retrieving Azure CLI credentials from cache...

Azure CLI credentials found.

==============================

======== SUBSCRIPTION ========

==============================

Retrieving Azure Subscriptions...

Chapter 5 Developing and Debugging Edge Modules

137

Subscription Name Id

------------------------ ------------------------------------

Visual Studio Enterprise 00000000-1111-2222-3333-444444444444

Subscription One 00000000-1111-2222-3333-555555555555

Select an Azure Subscription Name or Id: [00000000-1111-2222-3333-

444444444444]:

======================================

======== SETTING SUBSCRIPTION ========

======================================

Setting Subscription to 00000000-1111-2222-3333-444444444444'...

===

======== RESOURCE GROUP LOCATION ========

===

Enter a Resource Group Location: (australiaeast, australiasoutheast,

brazilsouth, canadacentral, canadaeast, centralindia, centralus, eastasia,

eastus, eastus2, japanwest, japaneast, northeurope, northcentralus,

southindia, uksouth, ukwest, westus, westeurope, southcentralus,

westcentralus, westus2) [westus]: eastus

===

======== SETTING RESOURCE GROUP LOCATION ========

===

Setting Resource Group Location to 'eastus'...

================================

======== RESOURCE GROUP ========

================================

Retrieving Resource Groups...

Resource Group Location

------------------------- ----------

iotedge-development eastus

iotedgedev-rg2 eastus

Chapter 5 Developing and Debugging Edge Modules

138

Enter Resource Group Name (Creates a new Resource Group if not found):

[iotedgedev-rg]:

===

======== SETTING RESOURCE GROUP NAME ========

===

Setting Resource Group Name to 'iotedgedev-rg'...

Checking if Resource Group 'iotedgedev-rg' exists...

Resource Group iotedgedev-rg does not exist.

Creating Resource Group 'iotedgedev-rg' at 'eastus'...

============================

======== IOTHUB SKU ========

============================

Enter IoT Hub SKU (F1|S1|S2|S3): (F1, S1, S2, S3) [F1]: s1

Error: invalid choice: s1. (choose from F1, S1, S2, S3)

Enter IoT Hub SKU (F1|S1|S2|S3): (F1, S1, S2, S3) [F1]: S1

=====================================

======== SETTING IOT HUB SKU ========

=====================================

Setting IoT Hub SKU to 'S1'...

=========================

======== IOT HUB ========

=========================

Retrieving IoT Hubs in 'iotedgedev-rg'...

Enter the IoT Hub Name (Creates a new IoT Hub if not found): [iotedgedev-

iothub-000000]:

=================================

======== SETTING IOT HUB ========

=================================

Chapter 5 Developing and Debugging Edge Modules

139

Setting IoT Hub to 'iotedgedev-iothub-000000'...

Checking if 'iotedgedev-iothub-000000 IoT Hub exists...

Could not locate the iotedgedev-iothub-000000 in iotedgedev-rg.

Creating 'iotedgedev-iothub-000000 in 'iotedgedev-rg' with 'S1' sku...

Creating IoT Hub. Please wait as this could take a few minutes to

complete...

=============================

======== EDGE DEVICE ========

=============================

Retrieving edge devices in 'iotedgedev-iothub-000000'...

Enter the IoT Edge Device Id (Creates a new Edge Device if not found):

[iotedgedev-edgedevice]:

=====================================

======== SETTING EDGE DEVICE ========

=====================================

Setting Edge Device to 'iotedgedev-edgedevice'...

Checking if 'iotedgedev-edgedevice' device exists in 'iotedgedev-

iothub-000000'...

Could not locate the iotedgedev-edgedevice device in iotedgedev-

iothub-000000 IoT Hub in iotedgedev-rg.

Creating 'iotedgedev-edgedevice' edge device in 'iotedgedev-

iothub-000000'...

====================================

======== CONNECTION STRINGS ========

====================================

Retrieving 'iotedgedev-iothub-000000' connection string...

Retrieving 'iotedgedev-edgedevice' connection string...

Chapter 5 Developing and Debugging Edge Modules

140

IOTHUB_CONNECTION_STRING="HostName=iotedgedev-iothub-000000.azure- devices.

net;SharedAccessKeyName=iothubowner;SharedAccessKey=<key>"

DEVICE_CONNECTION_STRING="HostName=iotedgedev-iothub-21dedd.azure-devices.

net;DeviceId=iotedgedev-edgedevice;SharedAccessKey=<key>"

Successfully backed up C:\Users\iotedgedev\edgesolution\.env to

C:\Users\iotedgedev\edgesolution\.env.backup

Updated current .env file

This output shows the prompts and the process used to create all the required cloud

resources. One of the benefits of using this command is that all of the connection strings

and other generated keys, etc. are added to the .env file in the solution directory, which

allows any other iotedgedev commands to use those details as context.

Once you have created a solution, using any of the tooling we have reviewed in this

chapter or an earlier chapter, you can use the iotedgedev build command. The build

command uses the values stored in the .env file and runs the docker build process for all

containers in the solution. The output from the build command is shown in Listing 5-18.

Listing 5-18.  Output from iotedgedev build command

C:\Users\iotedgedev\edgesolution2>iotedgedev build

=======================================

======== ENVIRONMENT VARIABLES ========

=======================================

Environment Variables loaded from: .env

(C:\Users\iotedgedev\edgesolution2\.env)

==================================

======== BUILDING MODULES ========

==================================

BUILDING MODULE: filtermodule

PROCESSING DOCKERFILE:

C:\Users\iotedgedev\edgesolution2\modules\filtermodule\Dockerfile.amd64

BUILDING DOCKER IMAGE: localhost:5000/filtermodule:0.0.1-amd64

Step 1/12 : FROM microsoft/dotnet:2.1-sdk AS build-env

 ---> 6baac5bd0ea2

Chapter 5 Developing and Debugging Edge Modules

141

Step 2/12 : WORKDIR /app

 ---> Using cache

 ---> 9fcaf5af70ec

Step 3/12 : COPY *.csproj ./

 ---> Using cache

 ---> a3403af9c2e4

Step 4/12 : RUN dotnet restore

 ---> Using cache

 ---> 83a24a48e971

Step 5/12 : COPY . ./

 ---> 96e000f659b8

Step 6/12 : RUN dotnet publish -c Release -o out

 ---> Running in 493f3d616c1d

Microsoft (R) Build Engine version 15.8.169+g1ccb72aefa for .NET Core

Copyright (C) Microsoft Corporation. All rights reserved.

 Restoring packages for /app/filtermodule.csproj...

 Generating MSBuild file /app/obj/filtermodule.csproj.nuget.g.props.

 Generating MSBuild file /app/obj/filtermodule.csproj.nuget.g.targets.

 Restore completed in 10.27 sec for /app/filtermodule.csproj.

 filtermodule -> /app/bin/Release/netcoreapp2.1/filtermodule.dll

 filtermodule -> /app/out/

 ---> 66bc85f4dc78

Step 7/12 : FROM microsoft/dotnet:2.1-runtime-stretch-slim

 ---> 0b74f72810f3

Step 8/12 : WORKDIR /app

 ---> Using cache

 ---> f60d36bbd085

Step 9/12 : COPY --from=build-env /app/out ./

 ---> Using cache

 ---> b206e921ee70

Step 10/12 : RUN useradd -ms /bin/bash moduleuser

 ---> Using cache

 ---> 969910b22653

Step 11/12 : USER moduleuser

 ---> Using cache

Chapter 5 Developing and Debugging Edge Modules

142

 ---> e0e6f1311693

Step 12/12 : ENTRYPOINT ["dotnet", "filtermodule.dll"]

 ---> Using cache

 ---> 6bce366fdc14

Successfully built 6bce366fdc14

Successfully tagged localhost:5000/filtermodule:0.0.1-amd64

BUILD COMPLETE

===

======== PROCESSING CONFIG FILES ========

===

Expanding 'deployment.template.json' to 'config\deployment.json'

The next logical step in the process after we have created and built the new edge

solution is to start/run the solution. But, one thing to be aware of when running

solutions using the iotedgedev utility is that it delegates all of the runtime commands

to the simulator command utility we examined earlier in this chapter. In fact, the setup,

start, and stop commands all directly correspond to the iotedgehubdev setup, start,

and stop commands. For this reason, the iotedgedev setup command must be run

before any of the simulator commands can be run, but if you have already configured

the simulator using the iotedgehubdev setup command, then that is all that’s required.

Both commands configure the same tool. But if you want to combine two commands,

you can use the --setup command line option with the start command and the

iotedgedev utility will run both the simulator setup and start commands for you.

Once you have configured the simulator (refer to the earlier sections if you need

help with this), you can run iotedgedev start to start the solution in solution mode.

Listing 5-19 shows an example of this.

Listing 5-19.  Output of iotedgedev start command

C:\Users\iotedgedev\edgesolution2>iotedgedev start

=======================================

======== ENVIRONMENT VARIABLES ========

=======================================

Environment Variables loaded from: .env

(C:\Users\iotedgedev\edgesolution2\.env)

Chapter 5 Developing and Debugging Edge Modules

143

==

======== STARTING IOT EDGE SIMULATOR IN SOLUTION MODE ========

==

Pulling edgeHubDev ... done

Creating edgeHubDev ... done

Creating tempSensor ... done

Creating filtermodule ... done

IoT Edge Simulator has been started in solution mode.

This output should look familiar to you, based on the previous sections about the

simulator utility. The result of this start command is that the modules in your edge

solution will now be running, in the simulated edge runtime environment.

Note A s a reminder, you can create a new edge solution using the IDE or CLI
tooling, build the solution and run the solution using the simulator, all without
needing an instance of the IoT Hub.

To stop the running edge solution, you use the iotedgedev stop command, which

should be fairly obvious at this point. An example of the output from running the stop

command is shown in Listing 5-20.

Listing 5-20.  Output from iotedgedev stop command

C:\Users\iotedgedev\edgesolution2>iotedgedev stop

=======================================

======== ENVIRONMENT VARIABLES ========

=======================================

Environment Variables loaded from: .env

(C:\Users\iotedgedev\edgesolution2\.env)

Chapter 5 Developing and Debugging Edge Modules

144

===

======== STOPPING IOT EDGE SIMULATOR ========

===

Stopping filtermodule ... done

Stopping tempSensor ... done

Stopping edgeHubDev ... done

Removing filtermodule ... done

Removing tempSensor ... done

Removing edgeHubDev ... done

Network azure-iot-edge-dev is external, skipping

IoT Edge Simulator has been stopped successfully.

You can see in the output that the utility not only stops the running containers, but it

also removes the containers. This helps keep things clean between runs of the simulator.

Each time the simulator starts, it will create new instances of the required containers.

There are several other commands that are available with the iotedgedev utility, but

I want to point out just a few that are very helpful.

•	 Monitor: This command monitors the messages sent to your IoT Hub

endpoint. This is a difficult thing to monitor because there are no log

files for these outgoing messages, so without this utility, you have to

configure the cloud resources to view the data, which can be more

difficult to trace.

•	 solution push: Pushes all of the solution images to the configured

container registry.

•	 solution deploy: Deploys the solution manifest to the configured

edge device. The default values are pulled from the .env file.

•	 solution e2e: This command combines several commands into one

larger, orchestrator command. The e2e command runs the solution

push, deploy, start, and monitor commands back to back, giving

you, the developer, an easy way to push your solution to your local

development edge device.

Chapter 5 Developing and Debugging Edge Modules

145

�Debugging Edge Solutions
Up until this point, we have investigated some tools and utilities that help us to run our

edge solutions locally, but we have not used them in a debugging scenario yet. In this

section, we will walk through how to use the tooling in VS Code and Visual Studio along

with the simulator to debug our edge solutions. We will debug our solutions using the edge

simulator, so if you have not configured that yet, please take this opportunity to do that.

�VS Code Debugging Overview
Debugging edge solutions in VS Code is not difficult, but it is probably different than

the debugging flow you’re used to. One of the first differences is the location of the

debugging settings. In VS Code, from the root solution directory, there should be a

.vscode directory that the IDE uses to store settings and other user-specific information.

In the FirstEdgeSolution that we created in the previous chapter, there should be a

launch.json file in the .vscode directory as shown in Figure 5-3.

Figure 5-3.  Debugging settings in VS Code

Chapter 5 Developing and Debugging Edge Modules

146

Launch.json is a JSON file that contains an array of launch configurations. Launch

configurations are groups of settings that provide an easy way to switch from one

debugging scenario to another. Additionally, you can add and remove configurations

to suit your needs. To add an additional configuration, click the “Add Configuration” in

the bottom right corner of the editor window shown in Figure 5-3. When you click that

option, the editor will display a list of available preconfigured configurations for you to

select from. For our debugging, VS Code has already added two configurations that are

specific to our edge solution when we created the solution, so we do not need to add

another configuration at this time.

The two configurations VS Code has prefilled for us are named "FirstEdgeModule

Remote Debug (.NET Core)" and "FirstEdgeModule Local Debug (.NET Core)".

One primary distinction to notice is that the “remote” configuration is an “attach”

configuration and the “local” configuration is a “launch” configuration. You can see this

represented in the request property of the JSON configuration. If you remember back to

our discussion on the simulator, we said that running the simulator in “solution” mode

was equivalent to “attach” mode and running the simulator in “single module” mode

was equivalent to running the simulator in “launch” mode. The meaning of “attach”

and “launch” from that discussion is identical to the meaning in these debugging

configurations. So, when debugging with the simulator using solution mode, you will

use the remote debug (attach) option and when debugging with the simulator in single

module mode, you will use the local debug (launch) option.

�VS Code Debugging in Solution Mode
Debugging in solution mode in VS Code is very straightforward. Once you have the edge

solution open in VS Code, simply right click the deployment.template.json file and

select the “Build and Run IoT Solution in Simulator” option, as shown in Figure 5-4. You

can also access this command in the command window (Ctrl+Shift+P) and search for

“Azure IoT Edge: Build and Run IoT Solution in Simulator.”

Chapter 5 Developing and Debugging Edge Modules

147

This single command does four things to help make your interaction with the

simulator easier:

	 1.	 Build the solution module images

	 2.	 Generate the deployment.json file from the deployment.

template.json file

	 3.	 Start the simulator in solution mode and pass a reference to the

generated deployment manifest file

	 4.	 Monitor the output of the solution edge modules in the VS Code

terminal window

Once all of these steps complete, your solution will be running in the simulator and

you will be able to view the messages flowing between the modules. An example of this

output is shown in Listing 5-21.

Figure 5-4.  VS Code option to run solution in the simulator

Chapter 5 Developing and Debugging Edge Modules

148

Listing 5-21.  Module output from running solution in the simulator

edgeHubDev | Initialized AMQP connection handler

edgeHubDev | Opened link Events

FirstEdgeModule | IoT Hub module client initialized.

edgeHubDev | Processing subscription ModuleMessages

edgeHubDev | Opened link ModuleMessages

edgeHubDev | Opened link MethodReceiving

edgeHubDev | Processing subscription Methods

edgeHubDev | Opened link MethodSending

tempSensor | Successfully initialized module client

edgeHubDev | Processing subscription ModuleMessages

tempSensor | Sending message: 1, Body: [{"..."}]

FirstEdgeModule | Received message: 1, Body: [{"..."}]

FirstEdgeModule | Received message sent

tempSensor | Sending message: 2, Body: [{"..."}]

FirstEdgeModule | Received message: 2, Body: [{"..."}]

FirstEdgeModule | Received message sent

This output had been modified for readability, but it shows the module name on the

left side and the abbreviated message payload on the right. It is extremely helpful to see

the combined view of messages across all running modules. And one additional feature

that can’t be conveyed in this text is that the module is also color coded so it’s easier to

trace your messages in the output window, even when there are a lot of messages flowing

through the output window.

This is all very helpful, but it’s still not actually debugging. So far, we have only

started our solution in the simulator and started monitoring the module output. In order

to debug, we need to attach our VS Code instance to the running instance of our solution

in the simulator. To do this, click the Debug icon in VS Code, as shown in Figure 5-5,

which will display the Debug view.

Chapter 5 Developing and Debugging Edge Modules

149

At the top of the screen in the Debug view, you should see an option to select the correct

launch configuration and then start the debugger. An example of this is shown in Figure 5-6.

Figure 5-5.  Debug icon in VS Code

Figure 5-6.  Debugger launch options

Because we are running the simulator in solution mode, we need to use the “attach”

debugger configuration, which is the Configuration named <Module Name> Remote

Debug (.NET Core). Make sure that configuration is selected in the selection list and

then click the button to start debugging. You will be presented with a list of processes

running in the container, like the list shown in Figure 5-7. Select the dotnet process,

which should be the top item in the list.

Chapter 5 Developing and Debugging Edge Modules

150

As a reminder, when VS Code builds the debug version of your module image, it

includes the required debugging information (symbols, etc.) and handles opening the

correct ports into the container. Because of that groundwork, VS Code is able to retrieve

this list of processes running in the container.

Once you select dotnet in the list, the debugger will attach to the process in the

container and you will be able to set breakpoints in the code and inspect the data, just

as you would for a locally running application. Any breakpoints you set should be set

before you attach the debugger. Breakpoints set after you attach are not as consistent as

breakpoints set before you attach.

Once you hit a breakpoint in your code, you have access to inspect local variables,

watch windows and call stack information. Figure 5-8 shows an example of the

debugging view with an active breakpoint in the temperature sensor solution we

have been working with up until this point. If you look at the messages in the output

window at the bottom of Figure 5-8, you will see that messages are continuing to flow

from the tempSensor module, but because the breakpoint has the FirstEdgeModule

execution paused, there are no messages being processed in it. If you were to remove

the breakpoint and let the execution run again, you would see several messages flowing

through the FirstEdgeModule very quickly because while execution was paused, the

simulator was queueing the messages coming from the other modules (which is the edge

runtime’s behavior).

Figure 5-7.  Debugger process list

Chapter 5 Developing and Debugging Edge Modules

151

An important detail to be aware of is that while we are using the simulator in our

example debugging scenarios, you are not required to use the simulator to debug.

You can connect to the actual edge runtime on an edge device. Most of the time, this

is helpful when a developer has configured their development machine as an edge

device and wants to connect to the containers running in that environment. The only

requirement to enable that is the edge device must still be running the debug version

of your module’s image. Don’t forget there are two places you must change to use the

debug version. First, you need to build the debug version of the container using the

Dockerfile.amd64.debug Docker build file (or a similar debug Dockerfile) and push the

debug image to a container registry. Second, you must change the deployment manifest

to point to that debug image. This is the step that gets overlooked most often. Once the

Figure 5-8.  Breakpoint in VS Code debugger

Chapter 5 Developing and Debugging Edge Modules

152

debug image has been pushed to the registry and the deployment manifest has been

updated, the edge runtime on the device will pull the debug image, start the debug-

enabled container and you will be able to attach to the container just as if you were using

the simulator.

�VS Code Debugging in Single Module Mode
The second method for debugging edge solutions3 with the simulator is single module

mode. In this mode, the entire solution is not started – a single module interface is

exposed. Which means any messages that normally flow between two edge modules

will not be flowing. Single module mode gives you a simple way to pass messages

to your module to test the logic of your code, without the complications of the

asynchronous, message-driven edge runtime, which severely complicates debugging

and troubleshooting. Single module mode is to solution mode what a synchronous,

single-threaded application is to an asynchronous, multi-threaded application. It is

much simpler to trace the logic when things are synchronous and single-threaded.

To debug a single module, open the command window and select the option “Start

IoT Edge Hub Simulator for Single Module,” as shown in Figure 5-9.

This command starts the two containers that make up the single module simulation

environment (refer to that section earlier in this chapter for more details). The output

from starting the simulator in single module mode displayed in the VS Code terminal

window is shown in Listing 5-22.

3�Remember that in both cases of solution mode and single module mode, the setup command
must be run. That configuration step is a prerequisite.

Figure 5-9.  Start simulator in single module mode

Chapter 5 Developing and Debugging Edge Modules

153

Listing 5-22.  Single module mode start command output

$ iotedgehubdev start -i "input1"

IoT Edge Simulator has been started in single module mode.

Please run `iotedgehubdev modulecred` to get credential to connect your

module.

And send message through:

 �curl --header "Content-Type: application/json" --request

POST --data '{"inputName": "input1","data":"hello world"}'

http://localhost:53000/api/v1/messages

Please refer to https://github.com/Azure/iot-edge-testing-utility/blob/

master/swagger.json for detail schema

$

In the output in Listing 5-22, you can see the tool is instructing us to run the

modulecred command that we discussed earlier. This command builds the connection

strings and credentials needed for our single module to run properly. But, the value of

the connection strings must be added to the runtime environment when our module

is launched. To help with this, there is another command in the VS Code tooling. In VS

Code, open the command prompt, and type “Set Module Credentials to User Settings.”

This command runs the modulecred command uses the values from that command to

add an environment variable section in the appropriate debugger configuration. The

result of this command is shown in Listing 5-23.

Listing 5-23.  Launch.json environment variable section for Local Debug

configuration

{

 "name": "FirstEdgeModule Local Debug (.NET Core)",

 "type": "coreclr",

 "request": "launch",

 "�program": "${workspaceRoot}/modules/FirstEdgeModule/bin/Debug/

netcoreapp2.1/FirstEdgeModule.dll",

 "args": [],

 "cwd": "${workspaceRoot}/modules/FirstEdgeModule",

 "internalConsoleOptions": "openOnSessionStart",

Chapter 5 Developing and Debugging Edge Modules

154

 "stopAtEntry": false,

 "console": "internalConsole",

 "env": {

 �"EdgeHubConnectionString": "${config:azure-iot-edge.

EdgeHubConnectionString}",

 �"EdgeModuleCACertificateFile": "${config:azure-iot-edge.

EdgeModuleCACertificateFile}"

 }

}

The effect of these entries being in this debugger configuration is that the VS Code

tooling will populate the values of these environment variables when the debugging

session starts. This step is not needed when running the simulator in solution mode

because the simulator is able to account for when it starts the solution containers. But,

in single module mode, because the code is run natively on your machine, not in a

container, the environment variables must be added to the local environment.

To run your module code, you need to compile the module code on your

development machine. To be clear, this does mean you need to build the container

image. You need to compile the code that runs inside the container on your local

machine. To do that, in the terminal window of VS Code, change to the folder where your

module’s .proj file is and run dotnet build to build the .Net Core application. Next, add

a breakpoint in your module’s code, wherever needed. Then, navigate to the VS Code

debug view by clicking the debug icon shown in Figure 5-5 and select the <module name>

Local Debug (.Net Core) debugger configuration. Once you have built your code and

have the breakpoint set, selected the local debug configuration, click the start debugging

button and your code will initialize. You will know your code correctly initialized when

you see the message: “IoT Hub module client initialized.”

However, don’t expect your code or breakpoints to be invoked just yet. All that has

happened is the Init operation ran as part of the startup routine. No event handling

code has run because there have not been any events sent to your locally running code

yet. You have to explicitly invoke your code using either the curl command line utility or

Postman, a common API testing utility. To illustrate how the pieces fit together in single

module mode, review the diagram in Figure 5-10.

Chapter 5 Developing and Debugging Edge Modules

155

Let’s briefly review the flow of commands and messages that are illustrated in

Figure 5-10.

	 1.	 The iotedgehubdev start command starts the two local Docker

containers, input and edgeHubDev.

	 2.	 The input container hosts a local web API to accept messages.

	 3.	 The local debugger starts the edge module code natively on the

development machine, not in a container.

	 4.	 An API utility like curl or Postman is used to send a request with

the device message payload and the destination input name.

Local Docker Runtime

Azure IoT Edge
Testing Utility

(container name: input)

Azure IoT Edge
Dev Hub Utility

(container name:
edgeHubDev)

Iotedgehubdev
CLI utility

Start up
testing containers

Local Dotnet Runtime

Local .Net IoT Edge
module code

Simulated Edge Runtime

Send message
To edgeHubDev

Send message to
Specified input name

(i.e. “input1”)

Receive message in
input event handler

API utility
(curl or Postman)

Invoke
API

Contains message payload
and destination input name

VS Code
Debugger

Start up local debug
session

Figure 5-10.  Single module mode components

Chapter 5 Developing and Debugging Edge Modules

156

	 5.	 In the input container, messages are transformed into IoT Edge

device messages and passed to the edgeHubDev container, which is

a simulated version of the edgeHub container.

	 6.	 The edgeHubDev container sends messages in the simulated edge

runtime to the input name that was specified in the API request.

	 7.	 The locally running module event handling code receives the

message and the processes the message as if it came from the

edge runtime.

Once you have everything up and running, you should be able to issue the command

shown in Listing 5-24 and get back the response: "{"message":"accepted"}".

Listing 5-24.  curl command to invoke the simulator

$ curl --header "Content-Type: application/json" --request POST --data

'{"inputName": "input1","data":"hello world"}' http://localhost:53000/api/

v1/messages

Additionally, the breakpoint you set in your module code should have been reached

and you should see debugging information, similar to what is shown in Figure 5-11.

Chapter 5 Developing and Debugging Edge Modules

157

�Visual Studio Debugging
Debugging IoT Edge solutions in Visual Studio is a little more straightforward than VS

Code. However, if you are using Visual Studio, the setup and configuration steps must

be done using the command line utilities. Visual Studio does not yet support all of the

integrated tooling that VS Code does. In Visual Studio, to debug in single module mode,

set the module project as the startup project in the Visual Studio solution explorer, as

shown in Figure 5-12.

Figure 5-11.  VS Code debugging view in single module mode

Chapter 5 Developing and Debugging Edge Modules

158

Once you have set the startup project, start the debugger. When it starts, a command

window will display showing “IoT Hub module client initialized.” Once that appears, you

can invoke the test URL using curl or Postman, just as you did with VS Code. Figure 5-13

shows the result of the “hello world” message being passed to the module.

Figure 5-12.  Set a single module as startup project in Visual Studio

Figure 5-13.  Visual Studio single module mode console output

Chapter 5 Developing and Debugging Edge Modules

159

To debug in solution mode in Visual Studio, you need to set the IoT Edge Project as

the startup project, as shown in Figure 5-14.

Figure 5-14.  Set IoT Edge project as startup project in Visual Studio

After that, start the debugger by pressing F5. When you debug in solution mode in

Visual Studio, you should see a separate console window open for each one of your edge

module projects, each one displaying the console output for that module as it processes

messages. For our sample solution, the simulator starts with the tempSensor telemetry

generator module and our custom C# module. So, there will only be one console output

window and it should display the output of the incoming telemetry being generated. An

example of this is shown in Figure 5-15.

Chapter 5 Developing and Debugging Edge Modules

160

�Third Party Edge Modules
Another topic I want to briefly mention is the concept of third party edge modules.

Because the Azure IoT Edge platform is based on containers, it is feasible that you might

leverage a container someone else has developed in your edge solution. For instance, if

you need to connect your edge server to a sensor that only communicates over a serial

cable using an old or obscure protocol, it’d be great if you didn’t have to write that code

yourself, but could leverage some existing utility modules. And in fact, there are many

modules that have been built that can be reused. So, I want to briefly make you aware of

a few of the more popular ones and describe how you would use them.

First, remember that any container you use must exist in a container registry. This

means that any third party code must have already been pushed to a public container

registry, like DockerHub, or you must build the code and push to a container registry you

have access to.

Figure 5-15.  Visual Studio solution mode console output

Chapter 5 Developing and Debugging Edge Modules

161

�Modbus Edge Module
One example of a third party module that solves a common problem for many edge

developers is the modbus edge module developed by Microsoft. The container

can be utilized using this DockerHub container registry address and version tag:

mcr.microsoft.com/azureiotedge/modbus:1.0. This module has the ability to

communicate with sensors using the modbus protocol,4 over either a serial cable or an

ethernet connection. The module then translates those low-level messages into JSON-

based messages that are published to another module, usually your custom module,

to process the incoming messages. In this scenario, you can connect to sensors that rely

on an older protocol, but consume that data in an edge solution to give it new life.

Let’s look at what the deployment.json section would look like for that modbus module.

An example is shown in Listing 5-25.

Listing 5-25.  Modbus module section in deployment.json file

"modbus": {

 "version": "1.0",

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 "image": " mcr.microsoft.com/azureiotedge/modbus:1.0",

 "createOptions": ""

 }

}

You can see that this is just like any other module in your deployment manifest,

with the exception that you don’t have any local code behind the module. To consume

messages from this module, you also need to route the messages from the named output

and specify a named input into your custom module code. An example route in the

deployment manifest is shown in Listing 5-26.

4�For more information on the modbus protocol, visit http://modbus.org.

Chapter 5 Developing and Debugging Edge Modules

http://mcr.microsoft.com/azureiotedge/modbus:1.0
http://modbus.org

162

Listing 5-26.  Deployment manifest route for modbus module output

"modbus": "FROM /messages/modules/modbus/outputs/modbusOutput INTO

BrokeredEndpoint(\"/modules/myModule/inputs/modbusInput\")"

This route routes messages from the modbusOutput named address into the name

input address modbusInput in your custom code. Given the fact that you have to route

messages into your code using a known, named output address and once you have

routed the messages, you have to be able to parse them, any third party modules must

provide some documentation to communication the name of the output address as well

as the schema of the messages it produces. For this modbus module, all the needed

documentation can be found on the associated GitHub page.5

One last piece of configuration that is needed for this module is the configuration in

the deployment manifest that relates to the module twin. A sample of this is shown in

Listing 5-27.

Listing 5-27.  Sample modus module configuration

"modbus": {

 "properties.desired": {

 "PublishInterval": "10000",

 "SlaveConfigs": {

 "Slave01": {

 "SlaveConnection": "192.168.10.10",

 "TcpPort": "502",

 "HwId": "Pump1",

 "Operations": {

 "Op01": {

 "PollingInterval": "10000",

 "UnitId": "1",

 "StartAddress": "35749",

 "Count": "57",

 "DisplayName": "Batch1"

 },

5�https://github.com/Azure/iot-edge-modbus.

Chapter 5 Developing and Debugging Edge Modules

https://github.com/Azure/iot-edge-modbus

163

 "Op02": {

 "PollingInterval": "10000",

 "UnitId": "1",

 "StartAddress": "35806",

 "Count": "50",

 "DisplayName": "Batch2"

 }

 }

 }

 }

 }

 }

The specifics of this config are not in scope for this discussion. But I will point out

two settings to show how easy it is to start communicating using this module. The

SlaveConnection and TcpPort properties are all that is needed to connect this edge

module to a modbus sensor over ethernet. If you set those properly, when the edge

solution starts up, you will see traffic flowing without having to implement the modbus

protocol.

The point you should walk away with is that third party modules can be added to

your edge solution just as easily as the custom code we’ve looked at. You just have to

be aware of the specific requirements (configuration, message input/output names,

message schema) for the module.

�OPC UA Edge Module
Another commonly used edge communication module is an OPC UA module, also built

by Microsoft. This edge module can be used with this container registry address and

tag: mcr.microsoft.com/iotedge/opc-publisher:latest. This module can connect

to an OPC UA6 endpoint and transform the message into a JSON message that can be

consumed by your custom module code. Similar to the modbus module in the previous

section, you simply have to know the IP of the OPC endpoint, the correct format for

the route, and the structure of the incoming messages. If you need to leverage the OPC

6�https://opcfoundation.org/about/opc-technologies/opc-ua/.

Chapter 5 Developing and Debugging Edge Modules

http://mcr.microsoft.com/iotedge/opc-publisher:latest
https://opcfoundation.org/about/opc-technologies/opc-ua/

164

UA module in your solution, a snippet of the deployment manifest required for this

container is shown in Listing 5-28.

Listing 5-28.  OPC UA module section in the deployment manifest

"opc_client": {

 "version": "1.0",

 "type": "docker",

"status": "running",

"restartPolicy": "always",

"settings": {

 "image": "mcr.microsoft.com/iotedge/opc-publisher:latest",

 �"createOptions": "{\"Cmd\": [\"publisher\", \"--di=60\", \"--to\",

\"--aa\", \"--si=1\", \"--op=150\", \"--oi=150\"]}"

 }

}

This module is similar to the modbus config section, but it includes the create

options property. This is a JSON string that is passed to the container when it starts up.

In this example, these create options are command line options that the OPC Publisher

code uses. To see a full list of the options, visit: https://github.com/Azure/iot-edge-

opc-publisher. To leverage this module in your solution, you will also need to create a

route from the output of this module to the input of your module. Listing 5-29 shows an

example of how to do this.

Listing 5-29.  Deployment manifest route for OPC UA module output

"opc": "FROM /messages/modules/opc_client/* INTO

BrokeredEndpoint(\"/modules/myOpcModule/inputs/opcInput\")"

This listing shows the output of the OPC module (opc_client) and the input of the

custom module (opcInput) in a similar way to the route we saw in the modbus example.

Note T he output route of the OPC UA Publisher edge module is slightly different
than other modules. There is no named output. It is just a wildcarded route source.
The example shown here is the exact way it should be represented in any other
solutions you create.

Chapter 5 Developing and Debugging Edge Modules

https://github.com/Azure/iot-edge-opc-publisher
https://github.com/Azure/iot-edge-opc-publisher

165

The configuration of this module is done through a separate file named

publishedNodes.json, not in the deployment manifest. More information about that

configuration file, the configuration options available and this module, in general, can be

found at the GitHub address above.

Third party modules all require some special research and discovery to understand

the nuances of each one and how to effectively leverage them. But, hopefully, you have a

better understanding of how third party modules can be used to more quickly build edge

modules. It’s helpful to think about edge modules as building blocks for future solutions

in your organization. The better the design is for the modules you build, the more they

will be able to reuse, which speeds up the development and deployment for those

solutions. This reuse and management of developed edge resources usually lead to the

creation of a team who manages the catalog of edge modules for an organization. This

team can then make other teams aware of existing functionality that is available, saving

time and money.

For more information on edge modules available from Microsoft like the two

protocol module examples we just reviewed, visit https://azuremarketplace.

microsoft.com/en-us/marketplace/apps and click Internet of Things, then IoT Edge

Modules in the left navigation. Both of the modules we discussed are on that list. But

Microsoft is actively working on building edge modules containers that encapsulate

cloud functionality that can be run on the edge. Currently, Stream Analytics, Storage,

SQL DB, and Machine Learning are all edge modules that can be run in your edge

solution.

�Summary
In this chapter, we discussed the development process for edge solutions and how a

couple of utilities can simplify that workflow. We looked at the iotedgehubdev simulator

utility as well as the iotedgedev utility that exposes a command line interface to create

and manage all aspects of edge solutions and the related development process. We then

looked at the configuration and setup required to use these command line tools and

what tooling is available in VS Code and Visual Studio. With a firm grasp of these tools,

your edge solution development experience should be much more efficient.

Chapter 5 Developing and Debugging Edge Modules

https://azuremarketplace.microsoft.com/en-us/marketplace/apps
https://azuremarketplace.microsoft.com/en-us/marketplace/apps

166

Lastly, we looked at two examples of third party edge modules built by Microsoft that

can be included in our edge solutions in minutes, with minor configuration. Third party

modules are a powerful addition to many edge solutions, saving time and money in the

development costs.

In the next chapter, we will look at enabling some advanced capabilities on the edge

by looking at how to run advanced analytics modules in an IoT Edge solution.

Chapter 5 Developing and Debugging Edge Modules

167
© David Jensen 2019
D. Jensen, Beginning Azure IoT Edge Computing, https://doi.org/10.1007/978-1-4842-4536-1_6

CHAPTER 6

Analytics on the Edge
One of the driving forces for edge computing is the ability to run analytics on

edge devices. Companies who have spent years creating and improving their

algorithms or machine learning models that are used in their backed batch

processing workflows are trying to understand how they can leverage that existing

intellectual property in new ways and in new areas using the edge. In many cases,

the batch processing paradigm imposes intolerable delays throughout the rest

of the dependent systems, which motivates companies to look for ways to speed

up the path to get the answers they want. The faster the results (results, not just

data) are generated, the faster the business can react. So, companies have started

introducing edge solutions that place this advanced logic (algorithms and models)

as close to the source of the data as possible, which enables decisions to be

made in real time, rather than having to wait on decisions until the data has been

processed by backed batch processes.

But there is another, newer, use case that has been gaining momentum over the

past couple of years. That use case is the use of third party advanced analytic modules

in brand-new solutions. Companies that have no existing intellectual property in the

form of machine learning models or proprietary algorithms are now investigating

and deploying solutions that leverage models and algorithms built by companies that

specialize in that field. For example, a retail company that deploys customer-facing

kiosks in their retail stores might decide to deploy a speech recognition solution so

that customers can ask for help without having to navigate the kiosk’s user interface. In

addition, that same company might decide to convert the speech it detects into text so

that the text could be analyzed for patterns and common questions.

This may sound like a straightforward solution, but chances are this retail company

has not spent any time or money building speech recognition or speech-to-text

models. Rather than invest the resources required to develop those assets, it makes

168

more sense for them to leverage this logic from a third party that has created language

understanding models and published them in a reusable format. This way, the retail

company can continue to focus on their core business, while at the same time, deploy

a compelling solution to their stores without having to become experts in language

understanding algorithms.

In this chapter, we will discuss the different options available to package existing

models or algorithms into edge modules as well as leverage prebuilt edge modules

containing models that have been trained and curated and are available for purchase or

through an open-source license.

�Azure Cognitive Services
For a few years, Microsoft has been building and improving a set of APIs known as the

Cognitive Toolkit (CNTK). The Cognitive Toolkit is a collection of different pretrained

AI models that are available to integrate into any custom application. These services are

now offered on the Azure platform under the name Azure Cognitive Services and are

grouped into five different categories.1 Figure 6-1 shows the landing page for the Azure

Cognitive Services.

1�To view the complete list of Azure Cognitive Services, visit https://azure.microsoft.com/
en-us/services/cognitive-services/directory/.

Chapter 6 Analytics on the Edge

https://azure.microsoft.com/en-us/services/cognitive-services/directory/
https://azure.microsoft.com/en-us/services/cognitive-services/directory/

169

To help you understand the available services here is a list of the Azure Cognitive

Services with a short description of each service.

�Vision API
The Vision API is a category of cognitive services that all focus on automated image or

video recognition.

•	 Computer vision: Recognizes significant elements in images.

Some examples include tagging (generating metadata) from

object detected in an image, landmark and celebrity recognition,

handwriting detection, optical character recognition (OCR) which is

detecting text characters in an image.

Figure 6-1.    Azure Cognitive Services landing page

Chapter 6 Analytics on the Edge

170

•	 Video indexer: Detects faces in video and other key events in video.

Examples include object and scene detection in video, metadata

generation from video files based on objects, scenes, and activities

identified in the video.

•	 Face API: Detects facial and emotional features. Examples include

detecting general faces, identifying specific people in an image,

detecting emotions being expressed in the picture.

•	 Content moderator: Scans image and/or video feed sources for

offensive content. Examples include automatically moderating media

files during upload to sharing sites like forums or social media.

•	 Custom vision: Image recognition that can be trained and tuned to a

user’s specific use case. Examples include license plate recognition.

�Speech API
Much like the Vision API, the Speech API is a collection of services that focus on speech

recognition. The goal of speech services is to automate and replicate the natural

interactions of humans through speech.

•	 Speech to text: Transcribes speech to text that is customizable and

can be adapted for unique vocabularies and accents

•	 Text to speech: Converts regular text to speech and includes voice

fonts for adjusting the output

•	 Speaker recognition: Identifies and verifies specific speakers based

on their voice input

•	 Speech translator: Translates speech real-time and can be

automated and customized for specific scenarios

�Language API
The Language API is an advanced set of text analytical services that move beyond just

dealing with text and use text to infer linguistic context.

•	 Text Analytics: Extracts key phrases from the text, detects the

sentiment of textual phrases

Chapter 6 Analytics on the Edge

171

•	 Bing Spell Check: The multilingual spell check service used by the

Bing search engine

•	 Language Understanding: Contextualized language understanding

which allows applications to respond specifically to a highly

contextualized interaction

•	 Translator Text: Detects languages and can automatically translate

languages, including custom vocabulary

•	 Content Moderator: Scans text for potentially offensive content,

based on the context

�Knowledge API
The Knowledge API is a single service that powers some of the interactions behind the

Bot Framework from Microsoft.

•	 QnA Maker: Extracts questions with corresponding answers from

unstructured text, supports the creation of a knowledge base from

collections of questions and answers

�Search API
The Search API is a collection of many of the Bing-nuanced search services.

•	 Bing Web Search: Supports safe (filtered) web searching and

location-specific web searching

•	 Bing Custom Search: A custom search engine which can be used for

a custom collection of data

•	 Bing Video Search: Returns video search results based on the

entered criteria

•	 Bing Image Search: Returns images search results based on the

entered criteria

•	 Bing Local Business Search: Returns local business search results

based on the specified area of interest

Chapter 6 Analytics on the Edge

172

•	 Bing Visual Search: Searches for related images based on an input

set of images used as the search criteria

•	 Bing Entity Search: Returns search results for named entities

(people, organizations, etc.) with curated and detailed information

about the entity

•	 Bing News Search: Returns news results based on relevance and the

current trending topics

•	 Bing Autosuggest: Returns autocomplete or query suggest results

based on the partial search criteria entered

In addition to just the initial offerings, the services can be chained together. So, for

example, you could spell check text and filter for offensive content before translating.

This workflow strings the Spell Check, Content Moderator, and Translation services

together as shown in Figure 6-2.

�Cognitive Services Containers
As I mentioned earlier, all of the services just described are available on the Azure

platform as a web API that can be scaled to support any level of traffic your application

or integration needs can generate. In addition to that, Microsoft has also begun to release

a subset of the Cognitive Services in Docker containers, so they are portable and can be

leveraged in more scenarios than the web APIs supported.

A use case mentioned earlier in this chapter that described a retail company trying

to deploy a customer-facing kiosk. If the solution depended on an HTTP call to the

Azure service for each and every utterance, the solution would be extremely chatty (with

network traffic, not human chattiness) and would experience significant delays with

Spell
Check

Input Text
Content

Moderator Translation

Results

Figure 6-2.  Chain of cognitive services used in advanced workflow

Chapter 6 Analytics on the Edge

173

the slightest of network latency. So, a better solution would be to have the AI speech

models hosted locally. With the model hosted locally, the solution can provide almost

immediate feedback and can maintain a level of consistency that is not attainable with

working with cloud services from an on-premises solution.

However, there is a great deal of work that goes into packaging these APIs into a

portable container. So, all of the aforementioned services are not yet available in a

container format. Here is a list (as of the writing of this book) of the services that are

available as a container.2

•	 Key phrase extraction: The key phrase extraction logic from the Text

Analytics API within the Language API category mentioned earlier.

Key themes are identified and extracted from the input text.

•	 Language detection: The language detection logic from the Text

Analytics API within the Language API category mentioned earlier.

Detects the language used in the input text for over 100 languages.

•	 Sentiment analysis: The Sentiment Analysis API logic from the Text

Analytics API within the Language API category mentioned earlier.

Detects the sentiment, either positive (1) or negative (0), for each

input text document.

•	 Face: The Face Detection API from the Vision API category

mentioned earlier. Detects human faces in images, compares two

faces against each other, and searches for similar faces in a known

facial database.

•	 Recognize text: The Text Recognition API from the Computer Vision

API in the Vision API category mentioned earlier. Detects text in

images and extracts the text contained in the image. Currently, this

API only supports the English language.

•	 LUIS: Allows users to load their custom LUIS (Language

Understanding) applications in a container. LUIS apps enable natural

language interactions through various client-facing endpoints.

2�Visit https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-
container-support for a list of the current containers supported.

Chapter 6 Analytics on the Edge

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-container-support
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-container-support

174

•	 Custom vision: Allows a user to run a custom-built model that has

been trained in the Custom Vision workspace. Custom vision models

can be trained to detect any objects in images, and recently the

Custom Vision API has added the ability to detect logos.

The list of Cognitive Services available in containers continues to grow. Microsoft’s

goal is to enable and make available as many of these services in a reusable container.

So, if the Cognitive Service you need is not listed above, keep checking the list referenced

earlier. It is continually changing.

�Using a Cognitive Service Container
Up to this point, we have only listed and discussed the available containers and some

of the functionality each of these containers possesses. Now, we need to walk through

what’s required to actually use one of these containers.

To get started, there are a few things that must set up in the Azure portal.

Note T his section also assumes the requirements specified in earlier chapters
are still present on your machine. VS Code, the IoT Edge simulator, and the IoT
Edge runtime are all required for the following sample.

The first thing you need to set up is a Cognitive Services resource. You can create

this by clicking the Create a resource link in the top left corner of the Azure portal. In the

search bar, enter cognitive services, as shown in Figure 6-3.

Chapter 6 Analytics on the Edge

175

Once this resource is provisioned, you can begin to create individual Cognitive

APIs. When you Cognitive Service resource has provisioned, open it and click the Add

button in the top left corner. You should see something similar to the screen shown in

Figure 6-4.

Figure 6-3.  Create Cognitive Services resource in Azure

Chapter 6 Analytics on the Edge

176

At the bottom of this screen, you should see a list of services that seem familiar,

based on the discussion so far. If you click More next to Cognitive Services, you can see

the full list of available services that can be provisioned in Azure.

When working with the Cognitive Services containers, there is a pattern you must

follow to enable the functionality in the container. We will pick one container and walk

through that process, but you should know that the same process holds true for the other

containers as well.

Figure 6-4.  List of available Cognitive Services

Chapter 6 Analytics on the Edge

177

For our example, select Text Analytics from the list of Cognitive Services. You will

need to select a region and resource group among a handful of other basic information.

Once you enter that criteria, wait for the resource to finish provisioning. Once it

completes, you should see a screen similar to the figure shown in Figure 6-5.

Now that you have provisioned the Azure resources, the associated billing and

security information are in place and can be used to configure the container. You see,

any of the Cognitive Service containers must be configured/connected to a provisioned

Azure resource so that the billing and usage can be calculated correctly.

Because we are focused on IoT Edge scenarios, I will show how to pull the text

analytics sentiment container into an edge solution, configure it, and issue a simple

HTTP call to test the container. This will walk you through the basic building blocks of

working with the Cognitive Services containers which you can then apply to your specific

scenario.

We will start with a new edge solution in VS Code. So, open VS Code and use the

Ctrl+Shift+P combination to create a new edge solution. It should look like the screen

shown in Figure 6-6.

Figure 6-5.  Text Analytics resource overview

Chapter 6 Analytics on the Edge

178

Enter a solution name as shown in Figure 6-7.

Next, enter the module template as an existing module with the full image URL. It is

the bottom option in the list shown in Figure 6-8.

After you select that template type, enter the module name for the cognitive services

container. The next prompt asks you to enter the full path, including tags for the

container image. For the Text Analytics Sentiment container, enter the URL shown in

Listing 6-1.

Figure 6-6.  New VS Code edge solution

Figure 6-7.  Edge solution name

Figure 6-8.  Edge module template type

Chapter 6 Analytics on the Edge

179

Listing 6-1.  Cognitive container image URL

mcr.microsoft.com/azure-cognitive-services/sentiment:latest

All of the Microsoft cognitive containers follow a similar pattern. They are all hosted

by Microsoft under the location/tag: mcr.microsoft.com/azure-cognitive-services

and you will have to find the name of the container and tag you need to add to the end

of that image URL. After you have entered the full image URL, hit enter and your edge

solution should be scaffolded out. Click the deployment.template.json file (which

you should be familiar with from our previous discussions in the earlier chapters. The

modules section of the deployment file should look like the snippet in Listing 6-2.

Listing 6-2.  Modules section from the generated deployment file

"modules": {

 "tempSensor": {

 "version": "1.0",

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 �"image": "mcr.microsoft.com/azureiotedge-simulated-

temperature-sensor:1.0",

 "createOptions": {}

 }

 },

 "SentimentContainer": {

 "version": "1.0",

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 �"image": "mcr.microsoft.com/azure-cognitive-services/

sentiment:latest",

 "createOptions": {}

 }

 }

Chapter 6 Analytics on the Edge

http://mcr.microsoft.com/azure-cognitive-services

180

 }

 }

 }

You can see that the edge solution has not only added our sentiment container but

also included the tempSensor container. Since we don’t need that for this example,

let’s remove that from the deployment file. Additionally, we don’t need any message

routes, because we are only going to run the web host in our container and not route any

messages to the IoT Hub or to any other containers. In the routes sections, remove the

two listed routes so that the $edgeHub config section looks like the snippet in Listing 6-3.

Listing 6-3.  Empty route section in the deployment file

"$edgeHub": {

 "properties.desired": {

 "schemaVersion": "1.0",

 "routes": { },

 "storeAndForwardConfiguration": {

 "timeToLiveSecs": 7200

 }

 }

 }

The last thing we need to configure in the deployment file is the startup

configuration settings for the sentiment container. All of the Cognitive Services

containers will need these same configuration steps. There are three configuration

parameters we need to set:

•	 Eula: Set to the literal value “accept”

•	 Billing: Set to the billing endpoint retrieved from the Azure portal

•	 ApiKey: Set to the value of the key retrieved from the Azure portal

The billing endpoint value can be found on the Overview page of the Cognitive

Service in the Azure portal, as shown in Figure 6-9.

Chapter 6 Analytics on the Edge

181

The ApiKey can be found in the Keys section of the resource in the Azure portal.

Once you have located both of these configuration values, add a section of JSON into the

createOptions section that looks like Listing 6-4.

Listing 6-4.  Cognitive container createOptions

"createOptions": "{\"Env\": [\"Eula=accept\",\"Billing={BILLING-

ENDPOINT}\",\"ApiKey={API-KEY}\"],\"HostConfig\": {\"PortBindings\":

{\"5000/tcp\": [{\"HostPort\": \"8080\"}]}}}"

We are adding a port mapping in this section as well so that when we point a browser

at port 8080 on the host machine, the container runtime will redirect that request to port

5000 in the container.

Once you have added these configuration parameters, right click the deployment.

template.json file and run the solution in the simulator. You should see output similar

to that shown in Listing 6-5.

Listing 6-5.  Edge simulator console output

Sentiment |

Sentiment | Logging to console.

Figure 6-9.  Azure billing endpoint

Chapter 6 Analytics on the Edge

182

Sentiment | �Submitting metering to 'https://eastus2.api.cognitive.

microsoft.com/text/analytics/v2.0'.

Sentiment | WARNING: No access control enabled!

Sentiment | Hosting environment: Production

Sentiment | Content root path: /

Sentiment | Now listening on: http://0.0.0.0:5000

Sentiment | Application started. Press Ctrl+C to shut down.

At this point, you should be able to navigate to port 8080 (or whatever port you specified

in the container port mapping) and see the welcome screen shown in Figure 6-10.

Figure 6-10.  Cognitive container welcome screen

Chapter 6 Analytics on the Edge

183

Now, click the link for the Service API Description and you will be able to view the

Swagger3 definition for the API. The Swagger information for our container should look

like the screen shown in Figure 6-11.

You can check the status of the container by clicking the GET section and then

click Try it out. Once you click Try it out, an Execute button will appear and you can

invoke that method on the container. The results should look like the output shown

in Listing 6-6.

Listing 6-6.  Sentiment Analysis API response

{

 "service": "sentiment",

 "apiStatus": "Valid",

 "apiStatusMessage": "Api Key is valid."

}

3�Swagger is a utility used to document REST APIs and you can find out more about it at https://
swagger.io/.

Figure 6-11.  Container Swagger screen

Chapter 6 Analytics on the Edge

https://swagger.io/
https://swagger.io/

184

The next thing to try is the actual sentiment request. If you click the POST section in

the Swagger screen and click Try it out, an Execute button will appear as before and if you

click that, the model will be invoked. Keep in mind the first time, the model takes much

longer because there are some initial tasks that must be run. In case you didn’t notice it,

the sample request that the Swagger documentation used is shown in Listing 6-7.

Listing 6-7.  Sample sentiment request

{

 "documents": [

 {

 "language": "en",

 "id": "1",

 "text": "Hello world. This is some input text that I love."

 },

 {

 "language": "fr",

 "id": "2",

 "text": "Bonjour tout le monde"

 },

 {

 "language": "es",

 "id": "3",

 �"text": "La carretera estaba atascada. Había mucho tráfico el día de

ayer."

 }

]

}

And the result of the sample request is shown in Listing 6-8.

Chapter 6 Analytics on the Edge

185

Listing 6-8.  Sample sentiment response

{

 "documents": [

 {

 "id": "1",

 "score": 0.9869070649147034

 },

 {

 "id": "2",

 "score": 0.8401265144348145

 },

 {

 "id": "3",

 "score": 0.334433376789093

 }

],

 "errors": []

}

The score shows how positive or negative the phrase is (within the range of 0 to 1).

The lower the score, the more negative it is.

�Next Steps with Cognitive Services Containers
In the previous section, we learned the basics of how to use and startup the Cognitive

Services containers. In order to use this in a production environment, you would need

to add some additional modules to your edge solution. Most likely, you’ll need a custom

edge module that will control the flow of the events occurring at the edge. If you had a

scenario where a customer-facing kiosk was deployed and you wanted to capture their

comments about a new product line and determine of their comments were either

positive or negative, you would deploy two Cognitive Services containers and a third

custom container to orchestrate the workflow. The high-level architecture would look

something like the diagram shown in Figure 6-12.

Chapter 6 Analytics on the Edge

186

The custom C# module, in this case, would have to capture the audio and send the

audio to the speech-to-text module through a local web request. The result of that web

request would be submitted to the sentiment module for evaluation. Then, the custom

logic in the C# code would respond based on whether the customer’s response was

either positive or negative.

This is a simple example only meant to help explain when, where and how the suite

of Cognitive Services containers can be leveraged in your real-world solutions.

�Azure Machine Learning Service
Everything up until this point has been geared toward models and containers that

Microsoft has built and we are just consuming them. What if we need some custom

logic built into our own container? If you have existing models or algorithms that

need to be packaged into a container, the Azure Machine Learning (ML) service is

the solution.

The Azure ML service is the latest in Azure ML tooling and replaces the previous

tooling known as the ML workbench. It also provides an environment for you to

prepare your data, experiment using Jupyter notebooks and finally build your model

or algorithm into a container that can be pushed to a container registry and later

deployed to your edge device. If you’d like to learn more about this service, you can

Custom C#
Module

Edge Device

Speech-to-Text
Cogni�ve Service

Module

Sen�ment
Cogni�ve Service

Module

Speech

Microphone

Convert speech
to text Evaluate text

Figure 6-12.  Possible architecture for customer kiosk solution

Chapter 6 Analytics on the Edge

187

read about it at https://azure.microsoft.com/en-us/services/machine-learning-

service/ and if you are interested in seeing some sample notebooks and how to use

them to build and deploy a containerized model, visit https://github.com/Azure/

MachineLearningNotebooks.

�Summary
In this chapter, we learned about the suite of ready to use models called Azure Cognitive

Services. We learned about how to access those containers and how to pull them into an

edge solution. We also learned how to test the edge module once it’s deployed and how

we can combine the cognitive services into highly advanced interactions in a relatively

short amount of time. Finally, we discussed the path forward for custom ML models

and algorithms. The Azure Machine Learning service provides all the tools necessary to

create, train, test, and deploy your custom models.

In the next chapter, we will look at how to provision devices at scale using the Device

Provisioning Service (DPS).

Chapter 6 Analytics on the Edge

https://azure.microsoft.com/en-us/services/machine-learning-service/
https://azure.microsoft.com/en-us/services/machine-learning-service/
https://github.com/Azure/MachineLearningNotebooks
https://github.com/Azure/MachineLearningNotebooks

189
© David Jensen 2019
D. Jensen, Beginning Azure IoT Edge Computing, https://doi.org/10.1007/978-1-4842-4536-1_7

CHAPTER 7

Device Provisioning
Service
In this chapter, we shift our focus away from the edge platform and processing and

take a look at one of the cloud services that supports any production-scale IoT scenario

in Azure. This service is the Device Provisioning Service (DPS). The DPS is a service

that connects to the IoT Hub service and the goal of the DPS is to validate the security

information on a device and connect the device to the correct IoT Hub instance

automatically. When dealing with hundreds or thousands of devices, it is not practical

to manually configure them. The DPS exists to automate the device provisioning

(bootstrapping) process and it is compatible with IoT and IoT Edge devices. Here are a

few scenarios where using the DPS can be extremely useful:

•	 Single IoT Hub scenarios such as automatically connecting

devices to IoT Hub without having to hardcode the IoT Hub

connection string, updating the device security keys used to

connect to IoT Hub

•	 Multi IoT Hub scenarios such as dynamically assigning devices to an

IoT Hub instance to load balance the devices, assigning devices to

an IoT Hub instance based on the geographic location of the device,

assigning devices to an IoT Hub instance based on the owner of the

device (multitenancy)

Let’s take a look at how the DPS automates these scenarios and simplifies much of

the configuration required to connect our edge devices to the IoT Hub service.

190

�Device Provisioning Workflow
The DPS uses a predefined set of steps, the device provisioning workflow, to configure

IoT and IoT Edge devices to an IoT Hub instance. In this section, we will take a look at

that workflow and discuss the requirements for the various steps. Figure 7-1 shows a

high-level view of this workflow.

Let’s examine this workflow in more detail to understand what’s happening at each step.

•	 Prerequisites: The first two steps labeled as prerequisites are

performed by the manufacturer.

•	 The manufacturer must provision the security information on

the device. This is something like an X.509 certificate or a key

provisioned to a TPM. Additionally, the connection information

for the DPS must be written to the device. It is recommended that

this information is managed during the manufacturing process,

rather than statically assigned in the device code.

•	 The manufacturer must add the correct security information to

the DPS enrollment list. This information is used to validate the

identity of the device when it initially connects to the DPS.

De
vi

ce
 P

ro
vi

sio
ni

ng
 W

or
kf

lo
w

M
an

uf
ac

tu
re

r
De

vi
ce

DP
S

Io
T

Hu
b

Prerequisites

Adds device
specific (identity,
security key, etc)

to the device

Adds device
enrollment
information

to DPS

Initial startup –
contact DPS for

provisioning info

Validate
device

enrollment
information

Register device with
IoT Hub

(can be based on many
complex factors)

Create IoT
Hub device

security info

Configure device
with IoT Hub

security
information

Connect to IoT Hub
and retrieve twin

configuration
information

Return device
and module twin

information

Figure 7-1.  Device provisioning workflow

Chapter 7 Device Provisioning Service

191

•	 DPS workflow: The normal provisioning workflow starts when the

device boots up for the first time.

•	 Using the DPS connection information the device was given

during the manufacturing process, it will connect to the DPS

instance.

•	 The DPS will validate the device identity/security information

it received in the initial connect request against the security

information associated with that device in the enrollment list.

This is the information populated during the second prerequisite

mentioned earlier.

•	 Once the DPS has validated the device, it will register the device

with the correct IoT Hub instance. Complex logic can be used

in this step to determine the IoT Hub instance to assign the

device to, which is one of the main benefits of the DPS – complex

provisioning business rules can be implemented and automated.

•	 After the device has been registered with its IoT Hub instance, the

DPS sends the IoT Hub connection information to the device.

•	 When the device receives the IoT Hub connection information,

it will attempt the initial connection to the IoT Hub. During this

initial connection, the device twin and, in the case of IoT Edge

devices, module twin, information will be sent to the device.

•	 Finally, the twin information is used on the device to complete

the device configuration. In the case of IoT Edge devices, this

includes pulling down the initial container images from the

container registries and starting up the edge runtime, based on

the module configurations (module twins).

�Device Provisioning Service Concepts
The Device Provisioning Service introduces its users to some concepts that might be

new, especially if you do not have any experience with device manufacturing. During

the manufacturing process (as I mentioned earlier), the manufacturer has a step that

Chapter 7 Device Provisioning Service

192

must be performed for the DPS to be able to validate the identity of the device and allow

the device to auto-register. And the process varies based on whether the device will use

X.509 certificates or TPMs for security. Let’s see how this manufacturing relates to the

way devices are provisioned by the DPS by reviewing a couple of concepts that the DPS

relies on enrollments and allocation policies.

�DPS Enrollments
The concept of device enrollment in the DPS is fairly straightforward. You can think

of enrollment similar to a class roster in school – a list of every possible member that

might join. In a classroom, the roster represents the complete list of allowed students,

any of which may or may not show up to the class that day. In DPS terms, the enrollment

is the list of allowed devices that are permitted to register, but some of them may not

have registered (shown up to class) yet. This enrollment list (roster) is built from the

information the manufacturer sends to the DPS. The requirement for any enrollment

is that the identity of the device attempting to enroll must be verifiable, also known as

attestation. If a device identity cannot be attested, it will not be allowed to continue in

the provisioning process.

In the DPS, there are group enrollments and individual enrollments. The type of

enrollment you chose really depends on the way you secure your devices. If you are

using TPMs, then you must use individual enrollments because the device’s security

information and identity are based on its individually unique keys. TPMs can’t use a

common signing root like certificates, so each individual device identity must be added

to an enrollment list.

If you are using certificates, you can use either group or individual enrollments,

depending on how you have set up your certificate management solution. If you have

a common root or intermediate certificates in the certificate chain that can be used to

attest multiple devices. Then, that common cert can be uploaded to the DPS and used to

define an enrollment group. Once that is done, any device presenting a leaf (individual)

certificate that has been signed by the root or an intermediate certificate for that group

will be granted access. One of the nice things about the DPS provisioning process is that

each enrollment group can assign devices to different IoT Hubs if needed. So, if you

are a service provider and have a different intermediate signing certificate for different

customers, you can use the customer intermediate signing certificate to define a DPS

Chapter 7 Device Provisioning Service

193

enrollment group and assign all devices in that group to a dedicated instance of IoT Hub.

But, if you do not have any shared signing certificates in the certificate chain, you may

still use individual certificates to create an individual enrollment.

One of the other attributes associated with both group and individual enrollments is

the initial device twin state. Once you define the initial device twin state in an enrollment

group, the DPS pushes that information to the correct IoT Hub instance so that the

device receives that configuration during the initial startup/bootstrapping process. This

is extremely powerful when you couple it together with the concepts we’ve discussed

earlier – IoT Hub automated deployments.

Note R emember from the Core Concepts chapter that deployments are defined
by a condition in the device twin that continually and dynamically identifies the
devices that should be included in the deployment based on the twin attributes.
Setting the initial twin state as part of the enrollment can feed devices directly into
deployments that have been set up in the IoT Hub.

With these features, the DPS helps to facilitate an automated workflow where the

initial state of the device is set in the DPS based on the enrollment and then the IoT Hub

detects that state and completes the device updates based on what has been configured

in the IoT Hub deployments for that device. Additionally, for IoT Edge devices, you can

include the modules and the complete deployment manifest as part of the deployment

group. This functionality enables completely automated device bootstrapping workflows

like the one shown in Figure 7-2.

Edge device in initial
manufacturing state

Initial device boot –
connects to DPS

DPS attests device
identity and allows

device to join
enrollment group

DPS sets initial device
twin properties, based
on enrollment settings

DPS assigns device to
IoT Hub specified in
enrollment group

Device connects to IoT
Hub and provides the

initial device twin set by
the DPS

IoT Hub detects the
device should be part of
an active deployment,
based on the twin info

IoT Hub deploys list of
modules specified in
deployment group

Edge device is
completely configured

with all required
modules

Figure 7-2.  Example automated device provisioning workflow

Chapter 7 Device Provisioning Service

194

�DPS Allocation Policies
Devices are assigned to an IoT Hub by the DPS through an allocation policy. Allocation

policies can be set at the service level or at the enrollment level. The default allocation

policy is set at the service level and can be one of three options:

•	 Lowest latency: The DPS assigns devices to the IoT Hub that is

geographically closest to the device location.

•	 Evenly weighted distribution: This is the default setting; devices are

distributed evenly across all the linked IoT Hubs.

•	 Static configuration: Devices are assigned based on the allocation

policy in the device’s enrollment group.

Devices that need an allocation policy different than the default, service-level, policy

can use an allocation policy that applies to the device enrollment. In an enrollment

(individual or group), the list of IoT Hubs available for the enrollment can be filtered and

the enrollment allocation policy will be used on the filtered list of IoT Hubs. This allocation

policy will override the service level policy, no matter what the service level allocation

policy is. Additionally, the allocation policies in enrollments have a fourth option:

•	 Custom: This allocation policy uses an Azure Function. With this

policy, any logic that can be coded in a Function can be used to

determine which IoT Hub to assign the devices to.

�Reprovisioning
Reprovisioning is the process of sending a device through the provisioning process we

have described a second, third (or more) iteration. When this happens, a decision must

be made about the device’s IoT Hub twin information that may have been significantly

updated since the initial provisioning. The three options are:

•	 Reprovision and migrate data: The device assigned to the updated

IoT Hub and the device twin is migrated from the current IoT Hub to

the new IoT Hub.

•	 Reprovision and reset to initial config: The device is assigned to the

updated IoT Hub and the initial config from the DPS enrollment for

the device replaces the current device twin.

Chapter 7 Device Provisioning Service

195

•	 Never reprovision: Do not allow this process to occur. This means

that once a device is provisioned it will have to be manually

reprovisioned if that is ever needed.

�Device Provision Service Setup
There are a few ways to create and configure an instance of the DPS. You can use the

Azure portal, the Azure command line interface (CLI) or ARM templates. In this section,

we will walk through using the Azure portal to set up a DPS instance and connect it to

our IoT Hub instance.

In the portal, click the “Create a resource” link and search for the IoT Hub Device

Provisioning Service, as shown in Figure 7-3.

After you select the Device Provisioning Service, click the Create button at the

bottom of the screen. The next screen, shown in Figure 7-4, prompts you to enter the

name of the DPS instance as well as the location, resource group, and Azure subscription

to use.

Figure 7-3.  Search for DPS resource in the Azure portal

Chapter 7 Device Provisioning Service

196

Once the service has been provisioned, navigate to the service overview. The first

action we need to perform is linking at least one IoT Hub. Click Linked IoT Hubs and

then click the Add button at the top to add a new IoT Hub. The portal should prompt you

to select the IoT Hub instance you want to link, as shown in Figure 7-5.

Figure 7-4.  Create a DPS instance

Chapter 7 Device Provisioning Service

197

Once you have entered all the required information, click Save at the bottom and

your DPS instance should now be linked to the IoT Hub instance you selected. Repeat

these steps for any additional IoT Hub instances you need to link to the DPS. Once

you have completed these steps, your DPS instance is ready to configure for device

provisioning.

If you will be using certificates for device attestation, you need to explicitly upload

the certificate files to the DPS. This is shown in Figure 7-6. Once you add certificates to

the service, you will be able to select them in the enrollment setup.

Figure 7-5.  Add a link to IoT Hub

Chapter 7 Device Provisioning Service

198

To set up a group enrollment with this certificate, look at the screen shown in

Figure 7-7. This is an example of group enrollment, using a signing certificate.

Figure 7-6.  Certificate upload in the DPS portal

Chapter 7 Device Provisioning Service

199

Figure 7-7.  Example DPS group enrollment using X.509 certificates

Chapter 7 Device Provisioning Service

200

In Figure 7-8, you can see an example of setting an individual enrollment with TPM

attestation.

Figure 7-8.  Example DPS individual enrollment using TPM

Chapter 7 Device Provisioning Service

201

�Configuring an IoT Edge Device
After we have created and configured your DPS instance, we need to configure our edge

device to communicate with the DPS correctly. If you are running the edge runtime

on a development machine that has a TPM, you will be able to use that TPM to test

provisioning your development edge device. If you aren’t sure if your machine has a

TPM, you can run the Get-Tpm PowerShell cmdlet and look for the TpmPresent property.

If you do not have a TPM on your machine, you can create and configure a virtual

machine with a virtual TPM, using Hyper-V. To do this, create the VM and on the VM

settings screen, select the Enable Trusted Platform Module option, as shown in Figure 7-9.

Figure 7-9.  Enable virtual TPM in Hyper-V

Chapter 7 Device Provisioning Service

202

Another option is to run a TPM simulator, using the code from GitHub repo Azure-

Samples/azure-iot-samples-csharp. Once you download the repo, go to the csharp\

provisioning\Samples\device\TpmSample subdirectory and run the command dotnet

run <IDScope> to start the simulator. The value for the IDScope argument can be found

in the Azure portal, on the overview screen for the DPS instance.

Once you have a TPM available, you should be to update the config.yaml file to use

dps provisioning rather than manual. Listing 7-1 shows an example of the way your file

should look before the changes and Listing 7-2 shows what the file should look like after

the changes have been made.

Listing 7-1.  Manual config.yaml configuration

provisioning:

 source: "manual"

 �device_connection_string: "HostName=<name>;DeviceId=<ID>;

SharedAccessKey=<key>"

provisioning:

source: "dps"

global_endpoint: "https://global.azure-devices-provisioning.net"

scope_id: "{scope_id}"

registration_id: "{registration_id}"

Listing 7-2.  DPS config.yaml configuration

provisioning:

source: "manual"

device_connection_string: "HostName=<name>;DeviceId=<ID>;SharedAccessKey

=<key>"

provisioning:

 source: "dps"

 global_endpoint: "https://global.azure-devices-provisioning.net"

 scope_id: "{scope_id}"

 registration_id: "{registration_id}"

Chapter 7 Device Provisioning Service

203

To provision the edge device using the DPS, you have to comment out the manual

configuration settings shown in Listing 7-1 and populate the dps values shown in

Listing 7-2. Here is a brief description of the four properties:

•	 source: Set this to dps to provision using the DPS rather manually.

•	 global_endpoint: The static, load balanced endpoint that all devices

connect to.

•	 scope_id: A unique string value generated for each instance of the

DPS. This can be found in the Azure portal DPS overview screen.

•	 registration_id: The device’s unique registration ID, which is used

when ownership of the TPM is established.

�Summary
In this chapter we took a brief look at the Azure Device Provisioning Service (DPS) and

how it can be used to automatically provision edge devices. We learned about DPS

enrollments and allocation policies and security attestations for X.509 certificates and

TPMs. We also discussed how to set up and configure the DPS using the Azure portal and

the fully automated workflows that are available when the DPS is used in conjunction

with the IoT Hub concept of deployments. Lastly, we looked specifically at what changes

are required to switch your development edge devices from manually provisioned to

automatically provisioned using the DPS. With this information in hand, you are ready to

start managing your devices in the most efficient way.

Chapter 7 Device Provisioning Service

205
© David Jensen 2019
D. Jensen, Beginning Azure IoT Edge Computing, https://doi.org/10.1007/978-1-4842-4536-1_8

CHAPTER 8

Azure IoT Edge Security
Don’t be misled by this chapter. You might be tempted to think that because this

chapter is one of the last chapters in the book, it’s an add-on topic to the Azure IoT Edge

platform. That couldn’t be further from the truth. In fact, many of the other chapters

provide the context necessary to properly understand the way Azure IoT Edge is secured.

Security is the core of Azure IoT Edge. All of the edge runtime components we have

discussed previously are all managed by the edge security service. No code is installed

or started on an edge device without first being initiated by the security service. But,

to be truly secure, the edge device hardware must also be secure. It is not enough for

the software to be secure. If the hardware can’t enforce the requirements, then all the

security baked into the edge runtime will still not yield a secure solution.

In this chapter, we will discuss not only some of the specifics about the security

implemented in the edge runtime, but also how those security measures interact with

various levels of security implemented by the IoT Edge hardware.

However, as you read this chapter, you must remember that securing your edge

solutions is not an objective you achieve that is never revisited. Security is a continuing

journey. What is secure this year, likely will not be secure 5 years from now. So, gaining

an understanding of the right security approach for your solution is the first step, but you

must evolve your approach going forward, which requires a more flexible design and

architecture.

�Assessing Security Risks
In order to effectively defend a solution or endpoint against security threats, the attack

surfaces and threats must be correctly identified. A common practice used to uncover

and capture the security threats is known as threat modeling. Modeling or analyzing

security threats allows solution builders to collect as much information as possible

when trying to understand how their solution might be compromised and informs their

206

designers to account for these attack vectors. When threat modeling is done during the

design and development phases, security mitigations can be included as the system is

designed rather retrofitted after the solution has been built and possibly deployed.

Note  If you are interested in a system designer that assesses threat
models, Microsoft has created a utility that can be downloaded from here:
www.microsoft.com/en-us/download/details.aspx?id=49168. It comes
with a Getting Started guide and a User’s Guide.

Microsoft has performed threat modeling for its reference IoT architecture.1 One of

the outputs of their process is the identification of four different threat zones in a typical

IoT Architecture: (1) devices, (2) field gateways, (3) cloud gateways, and (4) services.

Each of these zones requires nuanced security considerations that are different from

the other zones. For example, in the device zone, protecting an IoT device from physical

tampering is required, but is not required for the services running in a physically secure

data center. As we think about each of these zones, IoT Edge devices span both the

device zone and the field gateway zone. So, any threats identified for either of those

zones should be considered to mitigate as many security risks on the front end of

solution development.

�IoT Edge-Specific Risks
There are two main nuances for the device and field gateway threat zones: physical

access and commodity hardware. These nuances demand a closer look if we are to

correctly think about our IoT Edge solution security.

One of the main security attack surfaces that is specific to an IoT Edge solution

when compared to a typical cloud solution is the physical access. The devices in IoT

Edge solutions are not deployed in a data center. And because these edge devices are

usually very close to the origin of most of the data for IoT Edge solutions, when they are

compromised, they affect everything that consumes their data. Therefore, they must be

secured in such a way that allows us to trust the data they are producing.

1�http://aka.ms/iotrefarchitecture.

Chapter 8 Azure IoT Edge Security

http://www.microsoft.com/en-us/download/details.aspx?id=49168
http://aka.ms/iotrefarchitecture

207

A second security attack surface when dealing with IoT Edge solutions is the

common nature of the hardware being deployed. More often than not, due to cost

constraints, edge servers are commodity hardware. This means the technologies used

to attack the edge device are commonplace and easily available, simply because of the

hardware standards used in consumer-grade components. For this reason, attackers

will usually have an advanced understanding of how to attack edge server hardware and

might already have all the tools necessary to connect to and compromise an edge device.

A final factor involved in edge solutions is value of the asset. While IoT solutions

share some of the same risks we just mentioned, they do not contain as much computing

intellectual property as an IoT Edge device. And as more advanced analytics and custom

enterprise modules, full of years of proprietary learning, get deployed to the edge

servers, they will only become more and more valuable to, not only the owner of the

asset, but also potential attackers. This makes IoT Edge deployments a unique scenario,

where it is the perfectly accessible, high-value target. Figure 8-1 illustrates this point.

Figure 8-1.  Relation of access vs. asset value for IoT Edge components

Figure 8-1 shows the uniqueness of IoT Edge components in the way they have

the lowest access restriction paired with the higher asset value when compared with

the other Azure resources and IoT devices. From this perspective, they are the most

appealing low hanging fruit for would-be hackers.

Chapter 8 Azure IoT Edge Security

208

�Edge Security Attacks
Everything we’ve discussed so far is the why of edge security risks. We’ve only

established why attackers will have a continued and increased interest in compromising

an IoT Edge device. We have not discussed the specific security attacks, or how these

attacks would attempt to exploit these devices. In order to properly defend against

attacks, it’s helpful to understand as much as possible about what methods and

approaches attackers will use.

One of the main goals of nefarious individuals is to “spoof” malicious code as

legitimate code to inject their own flavor of data into the system and/or read data out

of the system. In order to appear as a valid data producer or consumer to other parties/

components in the system, the infected code must somehow gain the trust of other data

producers and consumers. This trust is gained by extracting and assuming a device’s

identity in the form of security cryptographic keys. These security keys must be protected

in a way that this extraction and identity transference is never a possibility.

Another approach to compromising IoT Edge solutions is to tamper with the device,

at either the hardware or the software level. Tampering can happen in many ways and is

related to the spoofing example just mentioned, but tampering does not always include

assuming the identity of a device. If an attacker can simply inject logic to either add to

or remove data that is flowing through the system, their goal can usually be achieved.

So, not only must the device identity be validated and repeatedly verified, the software

running on the device must somehow be verified. This is usually done through code

signing so that the code running can be authenticated against a trusted, known source –

the signing authority.

A third approach of attack is to simply listen/monitor to the data flowing between

the device and the cloud. Siphoning off the data stream to another data store can be

done without any custom software if that path is not secured. Using simple network

traffic monitoring tools, unsecured data streams can be captured and stored without the

need to tamper with the device, extract the device identity or even inject malicious code.

For this reason, all data traffic flowing between the cloud and the edge device must be

encrypted and secured.

One of the last areas of concern is the data at rest on the device. If there is data stored

in plain text on an edge device, anyone who is attempting to attack your systems needs

only to physically access the storage media on the edge device and read the data out. As

a result, the data at rest must also be encrypted to prevent hackers from accessing the

data stored on these commodity hardware-based devices.

Chapter 8 Azure IoT Edge Security

209

Given these attack approaches, how can these threats be addressed in a way that

enables the same robust security present in the Azure cloud-only solutions? Is it possible

for the cloud security capabilities on the edge to advance to the point of the cloud

computing capabilities on the edge? The answer is yes.

�Secure IoT Edge Hardware
Before we dive into the details of how the Azure IoT Edge runtime addresses the

concerns and attack vectors we have mentioned, we need to briefly discuss one

foundational topic – the hardware chosen for the edge server. As we have stated before,

if the software is attempting to run securely and the hardware does not support it, the

solution will not be secure. To support the edge runtime security, the edge device should

have a hardware root of trust upon which to base the software trust. This is critical to the

success of any IoT Edge deployment. In picking your hardware, you must understand

what the components support and what they do not support. Let’s take a quick look at

what properties of hardware help determine if it’s secure or not.

The devices used for edge deployments are usually not custom hardware. The

hardware used in edge solutions is most commonly a preconfigured device with a

limited set of options that can be modified. Therefore, it is important to verify that the

device you chose supports the security scenario you need to implement.

The most common type of hardware security module is called a Trusted Platform

Module (TPM).2 TPM is really a set of security protocols created and maintained

by Trusted Computing Group (TCG)3 that have been implemented in a hardware

component. One of the primary benefits of a TPM is the key protection they offer. Storing

keys in a TPM prevent any malicious attempts to retrieve the keys. It is important to

note that because TPM is a really a set of protocols, it can be implemented in hardware,

firmware, or even software. The firmware and software options are more accurately

“virtual” TPMs or VTPMs and are much less secure. So, when picking an edge device,

verify it has a hardware TPM module. That is by far the most secure option.

However, if for some reason, you aren’t able to select edge hardware that has a TPM,

the edge runtime also supports custom Hardware Security Modules (HSMs), but you

must verify that the hardware vendor also provides the HSM wrapper that complies to

2�http://trustedcomputinggroup.org/work-groups/trusted-platform-module/.
3�https://trustedcomputinggroup.org/.

Chapter 8 Azure IoT Edge Security

http://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/

210

the APIs the edge runtime requires. If a hardware vendor has implemented a custom

HSM to support IoT Edge, the device will be listed in the IoT certified device catalog,

located at: https://catalog.azureiotsolutions.com/. An example of this catalog is

shown in Figure 8-2.

Figure 8-2.  Azure IoT Edge device catalog

As long as you pick hardware from the Azure IoT Edge device catalog, you can be

guaranteed that the hardware will support the requirements of the edge runtime. If you

aren’t able to use a device that is has been certified, make sure you understand how the

vendor has implemented hardware security so that you can properly configure the edge

runtime.

Now that we have reviewed the most common security attacks and how to select the

right hardware to support the requirements of the edge runtime, let’s look at how the

edge runtime defends against the security threats by examining the IoT Edge Security

Architecture.

Chapter 8 Azure IoT Edge Security

https://catalog.azureiotsolutions.com/

211

�IoT Edge Security Architecture
The security architecture for the Azure IoT runtime is designed to be flexible so it can

evolve over time. And the core of the edge security architecture is the edge Security

Manager service.

�Security Manager
This service is responsible for bootstrapping the rest of the edge runtime and handles

all of the security validation and verification checks at runtime. Figure 8-3 shows the

components that make up the security service.

Security Manager

Security Daemon

Hardware Security Module (HSM) API

Hardware Security Module (HSM) Platform API

File System
(not rec’d for
production)

TPM API Custom HSM API

TPM Driver Custom HSM
Driver

TPM HSM

Figure 8-3.  IoT Edge Security Manager components

Chapter 8 Azure IoT Edge Security

212

Here is a brief description of each of these components.

•	 Security Manager: The general term used that refers to all of the

security components, many of which are abstracted away from the

user.

•	 Security daemon: The main orchestrating security service that runs

on the edge device. This service is the primary worker that starts up

the other edge runtime components like the edgeAgent and edgeHub

modules, which in turn start up custom modules assigned to the

device. The security daemon is also responsible for interacting with

the available hardware modules (TPMs or other HSMs) for secure

operations.

•	 HSM API: The exposed HSM API to the security daemon operations

that require HSM interactions.

•	 HSM platform API: The platform abstraction layer that abstracts

the actual hardware capabilities present on the device. This layer

delegates the security operations to the hardware-specific driver.

In Figure 8-3, only one of the underlying implementations would

be used – either file system, TPM API, or custom HSM API – but not

more than one. The Security Manager handles this delegation, based

on the capabilities of the hardware.

•	 File system: A development-only virtual implementation of the

hardware functionality. This is included with the Security Manager to

help the initial startup process.

•	 Hardware driver: The platform and hardware-specific software

wrapper of the hardware component installed on the edge device.

This could be the TPM driver for the TPM hardware vendor or a

custom driver for another HSM installed on the edge device.

•	 TPM/Custom HSM: The actual hardware security component

installed on the device.

Chapter 8 Azure IoT Edge Security

213

�Security Daemon
The security daemon service that orchestrates most of the activity in the edge security

runtime contains several internal APIs that work together in a secure set of exchanges to

provide a secure environment that is resistant to attacks. Remember from the discussion

on the types of attacks that stealing (spoofing) a device’s identity and tampering, at either

the hardware or the software level, are the two most common types of security attacks.

The secure APIs in the security daemon directly combat these two types of attacks. In

order to understand that, let’s reexamine a diagram we looked at in Chapter 2, where

we first introduced the Security Manager. Figure 8-4 shows the details of the security

daemon service, identifying all of the internal APIs it uses.

Figure 8-4.  IoT Edge security daemon architecture (Image from Microsoft blog
post, “Azure IoT Edge Security Manager”, July 29, 2018)

Chapter 8 Azure IoT Edge Security

214

The security daemon is intentionally separated into several components so

that it can take advantage of hardware security functionality like trusted execution

environments as well as verify the integrity of each of the software components during

runtime operations. In the following sections, we will look in more detail at these

components to better understand how they maintain a secure runtime environment.

�Cloud Interface

The cloud interface is a generic interface that enables the security daemon to take

advantage of services in the Azure cloud that might help it. Currently, this interface is

used when the edge device uses the Device Provisioning Service (DPS) to bootstrap the

device. Because this is a generic interface, other cloud services may be used in the future.

In order to access the DPS, the edge device must provide the unique ID of the TPM

or other HSM or a certificate that proves the device’s identity. By storing the secrets

required to access the DPS in an HSM, attackers are unable to retrieve those secrets, and

therefore, unable to assume the device’s identity.

�Management API

The Management API is only used by the edgeAgent module. The edge agent is

responsible for the management of all other edge modules, which includes starting,

stopping, creating, and removing containers. It would be straightforward for the

edgeAgent to handle these module management tasks directly, but that would be a

security vulnerability because a malicious module could assume the same name as an

existing module and be loaded. This is major security risk. Somehow, the validity of the

modules must be verified before the module is started.

To defend against this vulnerability, the edge security daemon exposes a

Management API that the edgeAgent uses for all of its module management tasks. Any

time the edgeAgent needs to perform a task to manage a module in some way, it calls

the corresponding API on the security daemon’s Management API. The daemon then

validates the security information for the module to be acted upon. Finally, the daemon

translates the edgeAgent’s request into a command that is sent to either the container

runtime using the Container API or to the active module itself using the Workload

API. Module creation tasks use the Container API and all other module related tasks use

the Workload API.

Chapter 8 Azure IoT Edge Security

215

One last thing to note about the Management API is the way it limits access of the

Management API to the edgeAgent module. Because the security daemon instantiates

the edgeAgent module, it collects information about the edgeAgent at creation time and

uses that information later to verify the edgeAgent identity and allow it access. No other

module is allowed to invoke the Management APIs. In this way, it grants the additional

permissions to the only module that requires them.

�Workload API

The edge security daemon Workload API is responsible for securely interacting with the

modules that have been created on the edge device. The Workload API handles issuing

certificates or tokens to the edge modules as well as validating those certificates tokens

on subsequent calls. All of the traffic between the modules and between a module and

IoT Hub is encrypted using TLS, which means that some modules must present a server

certificate and other modules must be able to trust that certificate. But, none of this is

known at build or deployment time. The modules do not know what other modules they

will have to trust when they are deployed to the edge device. This is where the Workload

API comes in.

When the edgeHub module starts up, it registers itself with the security daemon

as a valid server that will run on the edge device. The edge security daemon, is able to

validate this using previously collected information about the module (collected when

the module was created, but before it starts). Once that validation is done, a server

certificate is generated and returned to the edgeHub. This server is responsible for

creating the TLS sessions the other modules must use to send and receive messages.

When other modules connect to the Workload API for identity validation, they receive all

certificates they should trust, which they use to verify the TLS connection.

In these interactions the Workload API serves as the gatekeeper for any module

interactions with other modules or the IoT Hub. Figure 8-5 shows a high-level view of

these module interactions.

Chapter 8 Azure IoT Edge Security

216

�Container API

The Container API provides an integration with the container runtime on the edge

device. Currently, the Container API supports integrations with Docker and Moby. Moby

is one of the container runtime components in the Docker family and the required

container runtime for production scenarios. Docker should only be used on your edge

device during development scenarios.

�IoT Edge Certificates
In the chapter on the Device Provisioning Service, we briefly described the

manufacturing requirements when provisioning certificates on edge devices. During

that provisioning process, we discussed how the manufacturer would need to provision

Edge security daemon

Module Identity Registry

Certificate Store

Module A

edgeHub Module

1. Register

3. Server
Certificate

2. Create new server cert

4. Register

5. Trusted
Server
Certs

Figure 8-5.  Workload API module interactions

Chapter 8 Azure IoT Edge Security

217

a device certificate to the edge device. This device certificate should be derived from a

trusted CA in your organization (in this case, the trust is established based on signing

certificate that has been uploaded to the IoT Hub). Once a device has been provisioned

with a certificate that IoT Hub can validate, that edge device will be able to connect to

the IoT Hub instance.

However, that is not the only purpose of the device certificate. The edge device itself

uses that device certificate for establishing and validating internal trusted connections.

When the edge runtime first starts, it generates a second device certificate called the

“workload CA” certificate. This certificate is never actually used at runtime. It is created

as an intermediate signing certificate so that other certs used on the device can be

generated from it.

Note T he name “workload” should seem familiar to you. This is the certificate
used to generate the certificate used to secure the Workload API interactions
between modules and the edgeHub module.

The next certificate that’s generated is a server certificate that is generated from the

workload CA certificate. The server certificate is used by the edgeHub module as the

server certificate during the initiation of the TLS connection that is created from all other

modules that need to send or receive messages using the edgeHub message broker.

Because the certificates are all generated from the original device certificate and that

certificate is trusted by the edge runtime, then the modules are able to communicate

over a trusted path, all based off the initial device certificate. Figure 8-6 illustrates the

different certificates used on the device.

Device CA Cert

Provisioned by
manufacturer

Edge Workload
CA Cert

Generated by
edge runtime

Generates

edgeHub TLS
Server Cert

Generated by
edge runtime

Generates

Figure 8-6.  Edge device-only certificates

Chapter 8 Azure IoT Edge Security

218

The server certificate (TLS) used by edgeHub will be given the common name (CA)

that is used for the hostname property in the edge’s config.yaml file. And in Figure 8-7,

we see how the edge modules connect to the edge server in a secure way, using the device

CA cert as the basis for the trust chain.

Edge Server

edgeHub Edge
module 1

Security Manager
edgeHub TLS
Server Cert

Device CA
Cert

2. Init /
Startup

(Module
identity

validated)

3a. Trusted
Certs3b. Trust

Established

5. Retrieve
Server Cert

4. Connect
Request

6. Return TLS
Server Cert

1. Create Cert

7. Secure Connection

Figure 8-7.  Module trust workflow

In Figure 8-7, we see a multistep process that takes place. Each step is important

to understanding the use of certificates on the edge device. So, let’s examine what’s

happening here, in just a little more detail.

	 1.	 The first step in establishing the secure connection is the creation

of the device’s server TLS certificate, which is signed by the Device

CA root certificate. This device CA root certificate is provisioned

by the manufacturer.

	 2.	 When the module starts up, it validates its identity with the

Security Manager.

Chapter 8 Azure IoT Edge Security

219

	 3.	 If the authentication is successful, a list of the trusted server

certificates is returned to the module. This is usually only

the device CA certificate. At this point (3b), the module has a

trust relationship with the device CA certificate and any child

certificates it creates.

	 4.	 The module then attempts to connect to the edgeHub message

broker module to be able to send or receive message through the

broker.

	 5.	 The edgeHub module retrieves the TLS server certificate from the

Security Manager.

	 6.	 The TLS server certificate is then returned to the requesting

module which is trusted, based on the prior trust established

between the module and the device CA certificate.

	 7.	 The module successfully and securely connects to the edgeHub

module.

Another scenario is when the edge server is configured as a gateway.

Note T his is only applicable to gateway scenarios where the child device can
support a TCP/TLS stack and can be provisioned with an X.509 certificate. If the
child device cannot support these requirements, then they will not be able to
connect to the edge server with a connection built on the X.509 certificate chain of
trust. The child devices most likely to support this scenario are in the transparent
gateway pattern.

In this gateway scenario, the edge server acts a field gateway for the child devices

connected to it. When there are child devices connected this way, those devices must

trust the same root CA certificate of the edge device CA certificate and once they do, they

connect to the edge server using a similar workflow as the module trust workflow shown

in Figure 8-7. Figure 8-8 shows an example of the child device trust workflow.

Chapter 8 Azure IoT Edge Security

220

Let’s examine this child device trust workflow in a little more detail as well.

	 1.	 The root CA certificate is used to generate both a device CA cert

and child device certificate. The child device cert(s) must be

provisioned onto the child device.

	 2.	 The device CA cert generates the TLS server certificate just as we

discussed before.

	 3.	 The child device attempts to connect to the edge server.

	 4.	 The edgeHub module retrieves the TLS server cert.

	 5.	 The edgeHub module supplies the TLS server cert to the child

device, which it should trust based on the certificate that was

provisioned earlier.

	 6.	 Once a trusted server certificate has be returned, the child device

successfully and securely connects to the trusted edge gateway.

Edge Server

edgeHub

Security Manager
edgeHub TLS
Server Cert

Device CA
Cert

Trust
Established

4. Retrieve
Server Cert

3. Connect
Request

5. Return TLS
Server Cert

2. Create Cert

6. Secure
Connec�on

HTTP
Device

Root CA
Cer�ficate

Child Device
Cert

1. Create Cert

1. Create Cert

Trust Established

Figure 8-8.  Child device trust workflow

Chapter 8 Azure IoT Edge Security

221

If you read the chapter on the Device Provisioning Service, you might remember

that we discussed two different manufacturing scenarios. The first included using X.509

certificates as we are discussing here. The second scenario did not use certificates – it

used the registration key from a TPM on the device. You might be wondering what

happens when the device is registered with the IoT Hub using a TPM registration key

rather than a certificate. I’m glad you asked.

When devices are manufactured with a TPM and are not provisioned with a certificate

generated from a known CA, the edge runtime must compensate for this somehow,

because it requires a certificate to support the TLS connections to other modules.

Note  Be aware that just because a device has a TPM it is not prevented
from using certificates. The TPM provides secure storage of device secrets like
certificates. TPMs do not exclude certificates. Certificates just aren’t required when
registering with the DPS if a TPM is present.

In this case, the edge runtime will actually generate a self-signed certificate at

installation time and use that certificate as the root signing certificate for the TLS

certificate. This scenario works in all cases except when a gateway is needed and child

devices must trust the TLS server certificate. There is no (easy or recommended) way

to provision the child devices with a certificate derived from the self-signed root CA

certificate. So, if you foresee the gateway scenario in your future, you should make plans

for the edge servers to be provisioned appropriately with the correct X.509 certificates.

�IoT Edge Security Promises
As we discussed earlier, the emergence of intelligent edge computing has brought with it

new security threats and attack surfaces. Edge servers support a wide range of business

scenarios and, as a result, are very diverse in their hardware and security capabilities.

An edge solution that counts the number of customers in a department store does not

require the same amount of security and protection that a life support edge solution

in a hospital requires. And because cost is directly tied to the security and hardware

capabilities of the edge server, edge solution builders should not be expected to always

purchase the most secure (expensive) option on the market. There are various levels

of security required and there should be various levels of hardware available to match

Chapter 8 Azure IoT Edge Security

222

the need. This trend is becoming evident in the edge hardware that is available now.

Hardware vendors are beginning to build hardware of various capabilities for different

use cases.

One of the side effects of varying hardware and security processes is the effect on the

solution developer. Historically, building apps that leverage secure hardware was not

an easy task and was reserved for the seasoned security professional. The complexity

increases considerably for a solution that needs to be customized for multiple hardware

configurations at varying levels of security capability.

To help ease that difficulty, Microsoft designed the IoT Edge Security Manager to

work with three levels of security capability or security promises (guarantees) while

keeping the Security Manager API the same. The Security Manager API abstracts the

underlying hardware implementation, which allows those details to remain hidden

from you or me in any interactions with the Security Manager. These three promises are

standard promise, secure element promise, and secure enclave promise. Here is a brief

description of the capabilities of each promise:

•	 Standard promise: The standard promise maintains all of the

attack countermeasures we’ve discussed so far in this chapter, but

simply stores the secrets on the edge device’s file system rather than

in secure storage. This approach is meant to ease the startup tasks

required to begin using the IoT Edge runtime. The standard promise

scenario should be seen as a development- or test-only scenario and

not a viable option for production solutions.

•	 Secure element: This promise contains all the capabilities of the

standard promise, but secrets are stored in secure storage like a TPM

or other HSM. This is baseline recommended for production IoT

Edge solutions. This promise allows any certificates or other secrets

required by the Security Manager to be stored in an HSM rather than

the file system.

•	 Secure enclave: This promise is still emerging and is discussed

in more detail in the section on trusted computing. It enables all

the capabilities of the Secure Element promise, but additionally

allows Trusted Applications (TA) to run code in a secure runtime

environment that is analogous to the storage of secrets in an HSM,

only for runtime execution, rather than data storage. This secure

Chapter 8 Azure IoT Edge Security

223

runtime prevents any outside access to the code running in its secure

environment. This promise allows the Security Manager to not only

store its secrets in secure storage, but it can also run the certificate

management and cryptographic trusted applications (TAs) in a

secure environment, enclave. This secure environment is sometimes

referred to as a Trusted Execution Environment and can be seen in

the bottom of the image in Figure 8-4.

�Trusted Edge Computing
There is an emerging trend in technology to create secure runtime environments that

shield data processing logic from outside tampering in much the same way a TPM

shields and protects secrets from outside tampering. When designing and implementing

a security architecture, a primary concern has always been protecting the data, at

rest and in transport. There was much less emphasis placed on securing the runtime

environment, mainly due to the physical deployment models that have existed up until

now. When code runs in a secure facility, on secure hardware, the risk for tampering is

greatly reduced. So, the money and energy for security have historically been placed on

securing the transport of data into and out of these secure facilities, which brought about

the ubiquity of SSL and TLS on the Web.

However, distributed computing patterns like blockchain and edge computing are

creating new security attack surfaces by placing computing environments in unsecure

or untrusted locations. With these computing patterns, one of your company’s most

protected assets (core business logic) is no longer locked away in a secure data center.

It is deployed into unsecure and sometimes unknown environments. This creates new

challenges to maintain the security required to protect that asset.

In an effort to address this challenge, hardware manufacturers are building more

advanced capabilities into their security components like TPMs or other HSMs to

enable more than just the storage of secrets. These new HSMs can allow small portions

of code to run in a secure, protected space called a Trusted Execution Environment

(TEE). Any code that runs in a TEE is not visible or accessible from outside the TEE,

thereby eliminating a large percentage of the attack surface. Two of the leading hardware

components that support these TEEs are the Intel SGX (for x86 and x64 processors) and

ARM TrustZone® (for ARM processors).

Chapter 8 Azure IoT Edge Security

224

But, securing code at the edge cannot be accomplished simply by running your

existing code on a machine with the new HSM hardware. Code must be built for these

secure environments and deployed into the trusted environment. Code that is built for a

TEE must use different tools and SDKs and be packaged into a Trusted Application (TA).

A Trusted Application is the deployment artifact that is deployed into the TEE. Two of

the SDKs used to build TAs are OpenEnclave4 and CoreTEE.5

OpenEnclave is a Microsoft-led open-source project that aims to create a common

TEE API across hardware vendors so that Trusted Applications are as portable as

possible. CoreTEE is a commercial implementation of the OP-TEE6 open-source project.

OP-TEE is an open-source TEE API for ARM-based processors and the security team at

Sequitur Labs has enhanced that base functionality for their CoreTEE offering.

All of that background is to help you understand some of the internal features of the

Edge Security Manager. The IoT Edge Security Manager was built with TEEs in mind.

When you use an edge server that adheres to the “Secure Enclave” hardware promise,

the Security Manager will take advantage of the TEE. To support this functionality, it

includes an implementation of the Open Enclave SDK for Intel-based machines and an

implementation of CoreTEE for ARM-based machines.

When the Security Manager detects that a TEE is present at installation time, it

will also deploy two Trusted Applications to the TEE. The first TA is responsible for the

management of certificates and the second TA handles the cryptographic routines that

are needed.

You don’t have to understand all the inner workings of the Security Manager and

the nuances of TEE and TA development and deployment to be able to create IoT Edge

solutions, but you should be aware of the TEE trend and what its goals are. Trusted

computing has the potential to become a major focus over the next few years and

understanding how it complements intelligent edge computing will be helpful.

Note  For more information on a cloud-based trusted computing offering, look at
the Azure Confidential Computing service at https://azure.microsoft.com/
en-us/solutions/confidential-compute.

4�https://openenclave.io.
5�www.sequiturlabs.com/coretee/.
6�https://github.com/OP-TEE/optee_os.

Chapter 8 Azure IoT Edge Security

https://azure.microsoft.com/en-us/solutions/confidential-compute
https://azure.microsoft.com/en-us/solutions/confidential-compute
https://openenclave.io
http://www.sequiturlabs.com/coretee/
https://github.com/OP-TEE/optee_os

225

�Summary
In this chapter, we looked at how to identify and think about the security risks that

are specific to IoT Edge solutions. We discussed why intelligent edge solutions are a

prime target for attack and we looked into some ways attackers might exploit those

vulnerabilities. Once we had a clearer understanding of these risks that are specific to

IoT Edge solutions, we discussed what attributes of edge hardware make it secure and

what a few of the options are when it comes to choosing hardware for your edge solution.

We also took a detailed look at the internal APIs of the IoT Edge Security Manager and

how it leverages the most secure hardware components available on the edge device, all

the while maintaining a consistent API. Finally, we discussed an emerging trend called

trusted computing that exists in some distributed computing solutions like blockchain

or intelligent edge solutions. These pockets of trusted computing are made possible by

some advances in secure hardware called Trusted Execution Environments (TEE). With

this understanding, you should feel equipped to accurately assess the security of IoT

Edge solutions and determine where improvements need to be made, if any.

Chapter 8 Azure IoT Edge Security

227
© David Jensen 2019
D. Jensen, Beginning Azure IoT Edge Computing, https://doi.org/10.1007/978-1-4842-4536-1_9

CHAPTER 9

Azure DevOps for
IoT Edge Solutions
Now that we have built a good foundational understanding of Azure IoT Edge solutions,

understanding how to automate the build and deployment processes for those solutions

is extremely helpful as you’re getting ready to deploy your solutions to production. You

may already be familiar with the Azure DevOps service, but if not, in this chapter you will

see how to use Azure DevOps to build and deploy IoT Edge solutions. Azure DevOps is

the latest evolution in Microsoft’s hosted development team management environment.

It enables teams to collaborate on project work, develop and track the project

deliverables like code. and build scripts as well as track the release and deployment of

the project artifacts. One of the reasons Azure DevOps is a great choice for managing

your IoT Edge deployments is the integration it provides with Docker and the support

it provides for containers in general. Additionally, there are tailored workflows for IoT

Edge development that simplify much of the build and release process. Azure DevOps is

a large topic. In this chapter, after we establish some of the basic concepts, we will focus

our attention on the workflows and processes required to develop and deploy Azure IoT

Edge solutions.

�Signing into Azure DevOps
To get started with Azure DevOps, you need to sign in and create a project. You can access

Azure DevOps by browsing to http://devops.azure.com in your browser. If you have

never signed into Azure DevOps, you will see a welcome screen similar to Figure 9-1.

http://devops.azure.com

228

Once you sign in, if you have not yet created any DevOps projects, you will be

prompted to provide a name for the initial project. Another action that happens behind

the scenes on your first login is the establishment of your organization. Organizations

are the top-level concept in Azure DevOps, which means that an organization must exist

prior to a project being created. If you sign into DevOps using a Work/Organizational

account, that organization will be used as the initial organization in DevOps. But, if you

use a personal Microsoft account, a default organization will be created for you.

Planning your DevOps structure is one of the most critical aspects of efficiently

managing your organization and teams using the DevOps services. If your DevOps

structure doesn’t accurately reflect your actual organizational structure, you will

struggle when working with the DevOps hierarchy you’ve created. The structure of your

teams and repositories will feel more in line with your business needs if you take time

up front to plan it correctly from the start. To help with the planning of your DevOps

environment, let’s review the basic concepts in Azure DevOps and what factors you

should consider with deciding how to structure your environment.

Figure 9-1.  Azure DevOps start screen

Chapter 9 Azure DevOps for IoT Edge Solutions

229

�Azure DevOps Basic Concepts
To effectively and correctly create your company’s structure in Azure DevOps, you

need to understand the levels of organization, what they logically represent and what

capabilities are associated with each level. The diagram in Figure 9-2 shows the high-

level organization structure in Azure DevOps with a brief description that follows. This

overview information will help you plan out your DevOps organization.

Organization

Azure DevOps

Project

Work Items

Team

Repository

Pipelines

Figure 9-2.  Azure DevOps organization structure

�Organization
An organization in Azure DevOps is a logical grouping of projects. It is top of the

structural model and should be viewed as a separate entity from any other DevOps

organization, containing its own projects, teams, work items, code repositories, and

build/release pipelines. The general guidance if you are just starting with Azure DevOps

is to begin with one organization and add additional organizations later, only if needed.

An organization can represent a company, a business unit, or a department. The number

of organizations that is right for you depends on how many teams and projects make up

each level of your organization.

Chapter 9 Azure DevOps for IoT Edge Solutions

230

�Project
A project in Azure DevOps should be thought of as a security boundary. In a project,

you may have multiple code repositories that separate the work streams or you may

choose to have one code repository per project. The decision should focus on your team

and how the code should be secured. If all code in the repositories will have the same

permissions for the team members (user A will serve the same role across all repositories,

etc.), then a single Project with multiple repositories makes sense. If, however, you need

to secure some code differently than other code, separate projects, each with a dedicated

repository is a better fit. Having a single project for multiple code work streams allows

the team to share the iteration and area paths as well as the build and release definitions.

These distinctions can help you determine the best option for your company.

�Team
A group of users that work together to deliver the work captured in a work item backlog,

using code repositories and pipelines to deliver the work and work item boards to

manage the work. A team in Azure DevOps is a long-lasting concept and should not be

tied to a single project.

�Work Items
Work Items in Azure DevOps make up the backlog and the other scheduled work that

is being tracked for an upcoming release. Work items are usually shown in a backlog or

sprint board. Teams will use various work item boards to track the current state of the

project work and report on project and sprint progress.

�Repository
Project repositories are the version control system for the code and scripts created

and managed by a project. These repositories come in two flavors: centralized and

decentralized. Decentralized repositories are Git repos and there can be as many

Git repositories as you need in your project. The centralized repositories are Team

Chapter 9 Azure DevOps for IoT Edge Solutions

231

Foundation Version Control (TFVC) repos (think back to TFS-style, centralized

repositories), and in any given project, there can only be one TFVC project. Within that

TFVC repo, you can create as many folders and branches as you need, but it all must

exist within the single repo. When using Git repos, decisions must be made about how

to organize the repos because there can be multiple Git repos in the project. The best

option is to structure your repositories so that each repository is dedicated to a single,

deployable product.

�Pipelines
Azure Pipelines is a hosted environment in which you can create custom build and

release workflows. There is a visual designer that enables an easy way to create and edit

your Continuous Integration (CI), or build, workflows as well as Continuous Deployment

(CD), or release, workflows. Build pipelines connect to a source repository and are

typically configured to begin a new build process whenever some specified trigger

happens (new push to the repo, etc.). Release pipelines use the output of a build pipeline

as the input to its workflow. The build output is deployed to the target environment

using the specified steps in the deployment/release pipeline. In Azure DevOps, there can

be as many Pipelines as needed in the project.

With the guidance above, you should be able to decide on an initial structure for

your organization’s DevOps projects, teams, and repositories. The structure of those

will dictate how your work items and pipelines are setup. Once you have your initial

structure in place you can begin to build and release code and continually evolve your

DevOps environment as new projects and products are created.

�Azure DevOps Configuration
Let’s take a quick look at how to setup the initial environment in Azure DevOps so

that you can begin to build and release your IoT Edge solutions. The screens we will

look assume you have the appropriate permissions. To view the organization level

information, you need to be a Project Collection Admin. To view the project level

information, you need to be at least a Project Admin for the project.

Chapter 9 Azure DevOps for IoT Edge Solutions

232

The first area to look at is the settings for the organization. After you have logged into

the portal, you can view the organization settings by first clicking the organization from

the project overview page, which is shown in Figure 9-3.

Figure 9-3.  Project overview page

The organization can be found in the top “breadcrumb” section of this page. Click

the name of your organization and you will see an option for Organization settings in the

bottom left corner of the screen. Once you click that, you should see a screen similar to

the screen in Figure 9-4.

Chapter 9 Azure DevOps for IoT Edge Solutions

233

The most common settings organization admins need to inspect on this screen are

the notification settings and the security permissions. If you have any experience with

managing TFS security groups, the internal DevOps groups will look very familiar. As

for the notification settings, the settings at the organization level are the global defaults

for any projects created in that organization and can be modified at the project and the

group and user levels.

Once you have verified the organization settings, navigate back to the project

overview screen shown in Figure 9-3. In the bottom left corner, you will now see an

option for Project settings. When you click that, you will see the Project Overview screen,

as shown in Figure 9-5.

Figure 9-4.  Azure DevOps organization settings

Chapter 9 Azure DevOps for IoT Edge Solutions

234

Figure 9-5.  Azure DevOps project settings

Chapter 9 Azure DevOps for IoT Edge Solutions

235

This screen gives you the tools to manage the teams, work items, security

permissions, and repositories. The most common settings to verify on the project setting

page are:

•	 Teams: Verify the correct teams have been created and the members

of each team have been correctly assigned.

•	 Notifications: Verify the project default settings for notifications are

consistent with the notification strategy.

•	 Dashboards: Configure the permissions for creating, editing and

deleting tam dashboards.

•	 Boards: Configure the specific information that drive the out-of-the-

box boards for the project – iteration dates, whether to view epics,

features, or user stories on the boards, etc.

•	 Pipelines: Manage the automation for building and deploying code,

including creating a service account to external services that can be

used during build and release automation (more on this later) and

retention policies for build and release output.

•	 Repos: Create and manage the repositories needed in the project as

well as the permissions associated with the repositories – this would

be where a production branch is secured differently than a dev or test

branch.

Once you have configured the organization and project correctly, another area for

customization is the dashboards that your team will use to track the project. To create a

dashboard (assuming you have the right permissions), click the Dashboards hub on the

left side of the project screen. Click the button to add a new widget. You should then see

a list of dashboard widgets that are available for you to add and resize, based on your

team’s preferences. An example of this is shown in Figure 9-6.

Chapter 9 Azure DevOps for IoT Edge Solutions

236

As you continue the process of configuring your DevOps project, another area that is

imperative to set up is the repository section.

Note T his section assumes you are using Git repositories rather than a TFVC
repository.

When you created your project, an initial/empty repository was created for you.

But, chances are you will need to either rename that repository or create another

repository. There is a shortcut to managing repositories from the repository hub in your

project. Once you click the repos hub, you can manage repositories and switch between

repositories using the pick list at the top of the screen. This is shown in Figure 9-7.

Figure 9-6.  Add widget to dashboard

Chapter 9 Azure DevOps for IoT Edge Solutions

237

The next area to consider setting up is the project artifacts section. When you initially

click the Artifacts hub in the project, you might see a screen that looks like Figure 9-8.

Figure 9-7.  Repository management menu

Figure 9-8.  Azure Artifacts initial screen

This indicates that your current user account does not have a license for the Package

Management extension assigned. The Package Management extension provides five free

user licenses. If you need more than that, there is a charge per user. To enable a license

on the current user (if needed), click the Go to Users hub button and click your user

account and click Manage extensions at the top of the screen. It should look similar to the

screen shown in Figure 9-9.

Figure 9-9.  Extension management for project users

Chapter 9 Azure DevOps for IoT Edge Solutions

238

When you click Manage extensions, you will see a screen as shown in Figure 9-10

that allows you to select the extensions you want to enable for the current user. Select

Package Management and click Save changes.

Figure 9-10.  Enable package management for user

Once you have assigned a license to your user, when you click Artifacts, you will now

be able to add a package feed to your project. A feed is a repository of reusable packages

to enable efficient code sharing. Feeds can be extremely helpful within an organization

to provide a common catalog of available packages. If you have used npm or nuget,

Azure Artifacts provides a similar mechanism for organizations to publish their own

packages through a version-controlled, internal interface. An example of a list of feeds in

Azure Artifacts is shown in Figure 9-11.

Figure 9-11.  List of feeds in Azure Artifacts

Chapter 9 Azure DevOps for IoT Edge Solutions

239

Now that we have reviewed the initial setup and some of the configuration aspects of

Azure DevOps, let’s take a deeper dive into the automation capabilities that are available

in a DevOps project. As an example workflow, we will now take a look at how to build

and deploy our initial IoT Edge solution and the specific concerns that must be taken

into account when building IoT Edge solutions.

�Create an IoT Edge Build Pipeline
By this point, you should have signed into an Azure DevOps instance and created at least

one project. As I stated earlier, if you do not have any projects in your account, upon

your first sign-in you will be prompted to enter a project name and the project will be

created for you. Once the project is created, we need to add our initial Edge solution to

a repository in the DevOps instance. To do this, open up a command prompt to the root

solution directory of the edge solution we built in Chapter 4.

Note T hese steps assume you have Git installed on your development machine
and have configured your user.name and user.email properties. If you do not have
Git installed, you can install it from https://git-scm.com/downloads. If you
need help configuring your user name and email, refer to the following help page:
https://git-scm.com/book/en/v2/Getting-Started-First-Time-
Git-Setup.

Once in that directory, run the following command: git init . as shown in Listing 9-1.

Listing 9-1.  Local Git repository initialization

C:\Users\iotedgedev\edgesolution>git init .

Initialized empty Git repository in [...]/edgesolution/.git/

C:\Users\iotedgedev\edgesolution>

Next, you need to add the code to the tracked items in the local repository and check

those files in. To do this, run the commands shown in Listing 9-2.

Chapter 9 Azure DevOps for IoT Edge Solutions

http://user.name
https://git-scm.com/downloads
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup

240

Listing 9-2.  Add and check in files to Git repository

C:\Users\iotedgedev\edgesolution>git add .

C:\Users\iotedgedev\edgesolution>git commit -m "initial checkin"

[master (root-commit) c6cb12b] initial checkin

 12 files changed, 449 insertions(+)

 create mode 100644 .env.backup

 create mode 100644 .gitignore

 create mode 100644 .vscode/launch.json

 create mode 100644 deployment.template.json

 create mode 100644 modules/filtermodule/.gitignore

 create mode 100644 modules/filtermodule/Dockerfile.amd64

 create mode 100644 modules/filtermodule/Dockerfile.amd64.debug

 create mode 100644 modules/filtermodule/Dockerfile.arm32v7

 create mode 100644 modules/filtermodule/Dockerfile.windows-amd64

 create mode 100644 modules/filtermodule/Program.cs

 create mode 100644 modules/filtermodule/filtermodule.csproj

 create mode 100644 modules/filtermodule/module.json

C:\Users\iotedgedev\edgesolution>

Now, we need to get the address of the target repository. To view this information,

click the Repos section of the project, as shown in Figure 9-12.

Chapter 9 Azure DevOps for IoT Edge Solutions

241

Copy the command line that shows the addition of the remote repository and run

that command in the local command window, as shown in Listing 9-3.

Listing 9-3.  Add remote repository to local repository and push

C:\Users\iotedgedev\edgesolution>git remote add origin

https://<project>@dev.azure.com/[...]/IoTEdgeDevelopment

C:\Users\iotedgedev\edgesolution>git push -u origin –all

When you run the second command, which pushes the new files to the remote

registry, you will be prompted to sign in to the Azure DevOps instance. When the prompt

appears, enter your credentials. Once you sign in to the remote registry, you should see

output similar to Listing 9-4.

Figure 9-12.  Initial repository information

Chapter 9 Azure DevOps for IoT Edge Solutions

242

Listing 9-4.  Git remote push output

C:\Users\iotedgedev\edgesolution>git push -u origin --all

Enumerating objects: 17, done.

Counting objects: 100% (17/17), done.

Delta compression using up to 4 threads.

Compressing objects: 100% (15/15), done.

Writing objects: 100% (17/17), 5.54 KiB | 1.11 MiB/s, done.

Total 17 (delta 3), reused 0 (delta 0)

remote: Analyzing objects... (17/17) (5 ms)

remote: Storing packfile... done (186 ms)

remote: Storing index... done (91 ms)

To https://dev.azure.com/[...]/_git/IoTEdgeDevelopment

 * [new branch] master -> master

Branch 'master' set up to track remote branch 'master' from 'origin'.

C:\Users\iotedgedev\edgesolution>

The build output should now show up in the Azure DevOps instance. In DevOps,

click the Builds hub under the Pipelines section. Click the New Pipeline button, as shown

in Figure 9-13.

Chapter 9 Azure DevOps for IoT Edge Solutions

243

When you select the New pipeline button, the default experience is the YAML editor.

But, for our example, we will use the visual designer. So, select the option to use the

visual designer. and then select the location of your newly populated Git repository.

An example is shown in Figure 9-14.

Figure 9-13.  Build pipeline creation

Chapter 9 Azure DevOps for IoT Edge Solutions

244

On the next screen, select the option to start with an empty template. Starting with

an empty template allows us to add just the tasks we need for the specialized task of

building and deploying IoT Edge solutions. IoT Edge solutions require the hosted Linux

build agent. So, you must change the build agent pool to Hosted Ubuntu 1604, as shown

in Figure 9-15.

Figure 9-14.  Select Git repository in the visual designer

Figure 9-15.  IoT Edge build agent pool

Chapter 9 Azure DevOps for IoT Edge Solutions

245

After updating the build agent, we can start adding the Edge build tasks. To add a

task to the build pipeline, click the plus (+) sign next to the Agent job 1 item in the task

list. You will be presented with a list of task templates you can add to the pipeline. In the

search box, type the word “edge.” There is only one task that is already installed and does

not have to be added from the marketplace. That is the task we will use and is shown in

Figure 9-16.

Figure 9-16.  Azure IoT Edge build pipeline task

Once you add the IoT Edge build task, you have three options for the action

parameter.

•	 Build: Uses the deployment.template.json file to build the

solution. The only output from the step that is saved is the generated

deployment.json file. It is published to a hosted Azure DevOps

location that is part of the configuration for the task.

•	 Push: Pushes the build output to a container registry.

•	 Deploy: Deploys the deployment manifest generated from the

deployment.template.json file to a set of devices defined in IoT

Hub.

Chapter 9 Azure DevOps for IoT Edge Solutions

246

For this exercise, we need to build the solution first. So, select the Build action. Also,

you must select the location in the repository for the deployment.template.json file

and the build platform. The build task options should appear like the figure shown in

Figure 9-17. You should notice that the output variable section has the reference name

populated. This is so that other steps in the pipeline can reference the variable names

from this step. Specifically, the DEPLOYMENT_FILE_NAME variable is used in the last step of

this build pipeline so that a release pipeline has easy access to the generated deployment

manifest when pushed to the IoT Edge devices.

Figure 9-17.  Build task parameter values

Chapter 9 Azure DevOps for IoT Edge Solutions

247

After configuring the build task, we need to add a task to push the output of the build

task to a container registry. To do this, add another IoT Edge workflow task exactly like

the build task you just added, but rather than selecting the build action, select the push

action, as shown in Figure 9-18.

Figure 9-18.  IoT Edge push task added to build pipline

Once you select the push action, you will see additional options specific to container

registries. Because the publish action pushes the edge containers to a container registry,

it will need access to the registry. The push task allows us to add container registry

connection information, which is a delegated service connection the pipeline can

leverage to gain the access permissions it needs.

Note S ervice connections are not new in Azure DevOps. They have been around
for a while. However, there are more out of the box services that Azure DevOps
supports. The actual configuration of each service connection is different, but once
you configure it, that service is available for any pipelines you or the team create.
This can be a helpful way for DevOps admins to setup and configure the approved
services that the development teams should be using, rather than development
teams trying to manage that on their own.

If you do not have a service account you can leverage for this access, the easiest way

to create it is to select the Azure subscription you’ll be using from the subscription pick

list and then press the Authorize button. This action creates a service link to you Azure

subscription using a service principal in Azure AD. You can see a completed form in

Figure 9-19.

Chapter 9 Azure DevOps for IoT Edge Solutions

248

Once you have selected the target Azure subscription and authorized the access, the

list of container registries in the subscription will populate. Once that happens, simply

select the registry you want to target. It is assumed that you have created at least one

Azure Container Registry in your subscription. If you have not, you need to take care of

that before you will be able to proceed.

Note  If you need to split your containers from a single edge solution into multiple
registries, you must add another publish task that targets the second (or third, etc.)
registry and use the Bypass module field in the advanced settings to add
containers that should not be pushed to the second registry in that step.

Figure 9-19.  IoT Edge publish task

Chapter 9 Azure DevOps for IoT Edge Solutions

249

Once you have entered all the registry information, you can add the final task in

the Build pipeline, which is publishing the build output so that a release pipeline can

consume it. This task is shown in Figure 9-20.

Figure 9-20.  Publish edge build artifacts

Note that the Path to publish value should be entered exactly as it is shown. It

references the output variable from the first step in this pipeline – the build step. The last

step before saving the build pipeline is to click the Triggers tab and enable the Continuous

Integration (CI) option and verify the CI trigger is set to monitor the correct branch in the

repository. After that is complete, you can save and close the build pipeline task.

To trigger the build, you can trigger (queue) the build manually, or make a change

to the source code and push the changes to the repository. When either of those events

happen, the build pipeline will start. Once the build completes, you should see a

summary screen that looks like Figure 9-21.

Chapter 9 Azure DevOps for IoT Edge Solutions

250

�Create an IoT Edge Release Pipeline
We have just created a build pipeline that builds our solution containers and pushes

them to our selected container registry and publishes the build output, which is

just the generated deployment manifest file, to be consumed by a release pipeline.

Release pipelines can begin with several different inputs, called artifacts. Here is a brief

description of some of the artifacts supported by release pipelines:

•	 Build: Any build pipeline that publishes its output to Azure

Pipelines/TFS can be consumed as an artifact.

•	 Azure repository: It is possible to deploy directly from an Azure Git

repository. Take caution when using this option so that you don’t lose

traceability when skipping the intermediate step of build pipelines

and retaining published build output.

•	 Azure artifacts: Azure Artifacts is a hosted package feed service and

greatly simplifies the sharing and versioning of applications and services

in an organization. It supports nuget, maven, and npm packages.

Figure 9-21.  Build pipeline summary output

Chapter 9 Azure DevOps for IoT Edge Solutions

251

•	 Azure containers/docker hub: Any container repositories in either

Azure Container Registry or DockerHub can be added as an artifact.

This is helpful if you don’t have control over a build process, but can

monitor a container registry for updates.

This list is not exhaustive and the complete list is being updated all the time as more

services are brought online. The important thing to note here is that there are many

options that can be used as input artifacts. As a result, some planning must be done to

determine when build output will be pushed to a container registry and when it will be

pushed to a package feed like Azure Artifacts.

To get started with the release pipeline, select Release under the Pipelines hub and

click the New Pipeline button and chose to start with an empty job. Once the designer

displays, click the option to add an artifact. The screen shown in Figure 9-22 should

appear.

Figure 9-22.  Artifact type selection blade

Chapter 9 Azure DevOps for IoT Edge Solutions

252

For our release pipeline, select the build artifact option that uses the published build

output, which matches our build pipeline. You will be prompted to select the correct

repository. Once you have added your artifacts, you need to enable the continuous

deployment option for the pipeline, by clicking the continuous deployment icon and

turning the trigger on, as shown in Figure 9-23.

Figure 9-23.  Release pipeline continuous deployment options

Next, we need to add a task to the stage we have created. Each stage has a workflow

very similar to the build pipeline workflow. Release pipeline stages are the correct

way to define different workflows for different deployment environments. In most

organizations, there are stages for (at least) a development environment, a testing

environment, and a production environment.

To edit the stage’s workflow in our example, click the hyperlink for the stage that

states how many tasks are included in the stage. The workflow editor screen will appear.

Add an IoT Edge task to the release stage workflow just like you did in the build process,

but this time select the Deploy to IoT Edge devices action. Once you select this option,

additional fields will appear that allow you to target either a group of devices or a single

device in the selected IoT Hub. If you target a single device, you must enter the device

ID. If you target multiple devices, you must supply a name/value pair that represents a

value in the device twin. Any device that matches the criteria you enter will be updated

during the release process. Figures 9-24 and 9-25 show examples of the completed

dialog, for a single device and multiple devices, respectively.

Chapter 9 Azure DevOps for IoT Edge Solutions

253

Figure 9-24.  IoT Edge release pipeline task for single device

Chapter 9 Azure DevOps for IoT Edge Solutions

254

Once we have entered this information and saved the release pipeline, make a

small change to the code in the repository. The build pipeline should begin and once

it completes our release pipeline should begin. This will validate our entire end-to-end

process.

When we go back and look at the completed release pipeline summary, we can

see the overall summary, as well as the detailed execution steps. Figure 9-26 shows the

overall release status after our pipeline was triggered and completed.

Figure 9-25.  IoT Edge release pipeline task for multiple devices

Chapter 9 Azure DevOps for IoT Edge Solutions

255

When we click the completed stage card, we are able to see the detailed steps for that

stage. Figure 9-27 shows the detailed steps for our Test stage.

Figure 9-26.  Release pipeline summary screen

Figure 9-27.  Release pipeline stage detailed step output

Chapter 9 Azure DevOps for IoT Edge Solutions

256

Another modification that should be made to our release pipeline is the addition

of a production stage with an approval request before the stage executes. To add the

production stage, you can hover over the Test stage and click the clone option. Cloning

a stage creates an exact copy of the stage. Once you have cloned the stage, your release

pipeline should look like Figure 9-28.

Figure 9-28.  Multistage release pipeline

When you have multiple stages in your release pipeline, the stability of each

environment is dependent on the quality of the code being deployed. So, if a release

fails in one stage/environment, we don’t want to propagate that to a second stage. To

automatically control this, there are pre- and post-stage checks that can be performed.

The two most common checks that are used are approvals and gates.

�Approvals
Approvals can be pre- or post-stage approvals and the approval request can be sent to any

number of approvers, but all approvers added to the request must approve it. If groups

are added to the request, only one member of the group is needed to satisfy the group

requirement. The release pipeline will wait until all the approvers have approved the

change before moving on the next step. If the approvals are not received by the specified

approval timeout, the release is canceled. Figure 9-29 shows the pending approval in the

active pipeline and Figure 9-30 shows the approval pane in the detailed pipeline view.

Chapter 9 Azure DevOps for IoT Edge Solutions

257

�Gates
Gates can also be either pre- or post-stage gates. Gates are an automated way of checking

external sources for validation before proceeding to the next step in the pipeline. Gates

can be custom logic in Azure Functions, a REST API call or work item query. Figure 9-31

shows the options available for a gate external validation check.

Figure 9-29.  Pending approval in active release pipeline

Figure 9-30.  Approval pane in active release pipeline

Chapter 9 Azure DevOps for IoT Edge Solutions

258

After the IoT Edge release pipeline tasks complete, you can see the new IoT Edge

deployment in the IoT Hub portal. Figure 9-32 shows an example IoT deployment. Refer

to our discussion on IoT deployments in an earlier chapter if you need a refresher on

what IoT deployments are.

Figure 9-32.  IoT Edge deployment in the IoT Hub portal

Figure 9-31.  Options for gate external integration points

Chapter 9 Azure DevOps for IoT Edge Solutions

259

�Summary
In this chapter, we have looked at some of the basic concepts and components that

make up the Azure DevOps services. Next, we talked about the most relevant decisions

points when planning the organizational structure in DevOps. Then, we walked through

configuring and creating the basic DevOps services to enable a solid initial environment.

Once all of that was complete, we moved on to creating a build pipeline that compiles a

solution manifest, pushes the containers that are built to a container registry, and finally

publishes the generated deployment manifest so that it can be pushed to a device in IoT

Hub. We also discussed and built an automated release pipeline that is triggered by the

build pipeline completed. The release pipeline pushes the deployment manifest to the

IoT Hub and targets either a single device or a group of devices, based on the criteria in

the Device Twin properties. All of these automation steps working together provide an

end-to-end fully automated IoT Edge solution that can be customized and added onto as

the company evolves going forward.

Chapter 9 Azure DevOps for IoT Edge Solutions

261
© David Jensen 2019
D. Jensen, Beginning Azure IoT Edge Computing, https://doi.org/10.1007/978-1-4842-4536-1

Index

A, B
Azure cognitive services

cognitive services containers (see
Cognitive services containers)

knowledge API, 171
landing page, 169
language API, 170
search API, 171–172
speech API, 170
vision API, 169–170

Azure container registry (ACR), 49
Azure DevOps

configuration
artifacts, 238
dashboard, create, 235–236
extension management, 238
organization settings, 232–233
project settings, 234–235
repository management, 236–237

IoT edge pipeline, creation
agent pool, 244
build hub, 242
Git repository, 243
Git repository initialization,

239–241
initial edge solution, 239
output, 250
parameter, 245–246
publish task, 248–249
push task, 247

IoT edge release pipeline, creation
approvals, 256
artifacts, 250–252
deployment options, 252
gates, 257–258
multistage, 256
multiple device, 254
output, 255
single device, 253

organization structure, 229
pipelines, 231
project, 230
repositories, 230–231
sign in, 227–228
team, 230
Work Items, 230

Azure IoT Edge
device management blade, 19–20
edge deployments, 45–47
edge module adding, 24
management blade, 22–23
module management blade, 21
security manager service, 43–45

Azure IoT Edge SDK, installation
container runtime, 73–74
Microsoft keys, 72–73
powershell command, 75–76
security service

configuration, 76–78, 82
security service install, 74–75

https://doi.org/10.1007/978-1-4842-4536-1

262

Azure IoT edge security
architecture

components, 212
manager service, 211

attacks, 208–209
device certificate

child device trust workflow,
220–221

module trust workflow, 218–219
workload CA, 217–218

hardware, 209–210
promises, 221–223
security daemon architecture

cloud interface, 214
container API, 216
management API, 214–215
service, 213–214
Workload API, 215

threats, 205–206
trusted edge

computing, 223–224
Azure IoT Hub configuration

basic information, 68
edge device addition, 70–71
instance creation, 67
IoT devices vs. IoT edge devices, 18
size options, 69

Azure IoT Toolkit, welcome
screen, 57

Azure machine learning (ML)
service, 186

Azure pipelines, 231

C
Cloud-based algorithm pattern, 12
Cloud platforms, 1
Cloud-to-device (C2D), 29

Cognitive services containers, 172, 174
Azure portal, 174
billing endpoint, 180–181
configuration parameters, 180–181
customer-facing kiosk, 185–186
edge solution, 177–178
list of services, 176
modules section, 179
sentiment request, 184
sentiment response, 185
Swagger, 183
text analytics, 177
VS code, 177–178
welcome screen, 182

Cognitive Toolkit (CNTK), 168
Command line interface (CLI), 195
Containers

architecting solutions, 25
basic architecture, 27
benefits, 25
creation and management, 25–26
software landscape, 25

Custom event handler method, 115–116

D
Data center, 2
Deployment manifest routes, 116
Device provisioning service (DPS), 214

add link to IoT Hub, 197
allocation policies, 194
configuring IOT edge device, 201–203
create instance, 196
device enrollment, 192–193
group enrollment, 198–199
individual enrollment, 200
IoT Hub service, 189
reprovisioning, 194–195

INDEX

263

resource, 195
workflow, 190–191, 193

Device-to-cloud (D2C), 29
Device twin

API, 31, 33
desired properties, 31
interactions, 33
JSON document, 32–34
reported properties, 31
restrictions, 34

Docker, installation
containers, 65–66
download dialog, 64
ID creation dialog, 64
local registry, 65
login dialog, 63
login prompt, 63

Docker ps output, 114
Docker tag format, 103

E
EdgeAgent module, 27

functions, 29
status code, 28
status indicators, 28

$edgeAgent properties, 107
Edge computing

maintenance, 7
network bandwidth, 6
security, 5

direct access, 5–6
firmware hacking, 5
messages, 6

Edge deployments
Edge development process

automation, 46–47
Azure IoT Edge Dev Tool

commands, 132, 144
iotedgedev build, 140–141
iotedgedev init, 136–139
iotedgedev setup, 133–135
iotedgedev star, 142
iotedgedev stop, 143–144
preconfigured container, 131
requirements, 131

Azure IoT EdgeHub Dev Tool
hub simulator, installation, 121
simulator, configuration,

122–124
single module mode, 125–128
solution mode, 124–125

core actions, 119–120
creation, 46
debugging edge solutions

single module mode, 152–157
Visual Studio, 157–160
VS Code, 145–146
VS Code, solution

mode, 146–151
third party edge module

modbus, 161–163
OPC UA, 163–165

EdgeHub module
message bus pattern, 30–31
responsibilities, 29
twin, 39

$edgeHub Properties, 108
Edge message route

condition, 42–43
modules, 40
parts, 40
route queries, 42
sink, 43
source, 41–42
WHERE clause, 42

Index

264

Edge solution
artifact actions, 93
building

module.json, 102
module list, 105
options command, 103

deploying
creation, 110–111
deployment.json, 105
$edgeAgent properties, 107
$edgeHub properties, 108
module information, 108–110
VS code, 106
VS creation, 113
VS generation, 112
visual summary, 107

develop activity
authentication methods, 99
message handler, 100–101
ModuleClient class, 94
transport settings, 99–100

F, G, H
Face detection API, 173
FirstEdgeModule output, 115

I
Ingest-interpret-respond pattern, 10
Init() method, 93
Integrated Development

Environment (IDE), 50
Intelligent edge, 2

advanced analytics, 11–13
digital world, 2
gateway, 3
industrial automation, 9–11

occasionally offline
devices, 13–14

protocol translation, 14–15
Intelligent edge-based algorithm

pattern, 13
IoT Edge Dev Tool,

installation, 66
IoT Edge Emulator, installation, 66
IoT Hub authentication,

device security, 97–98

J
JSON structure, module

information, 108

K
Key phrase extraction, 173

L
Language detection, 173
Language understanding (LUIS), 173

M
Main() method, 93
Message bus pattern

address abstraction, 30
benefits, 31
responsibilities, 31

Microsoft cognitive containers, 179
ModuleClient class

methods, 94, 96–97
transport types, 95

module.json file, 109
Modules, 27

INDEX

265

Module twins
desired properties, 36–38
moduleId property, 35

N
Net Core 2.1, installation, 61–62

O, P, Q
OPC UA module, 163–165
Out-of-band agreement, 30

R
registryCredentials section, 38
Reprovisioning, 194–195

S
SAS policy keys, 97–98
SCADA architecture, 10
Security daemon architecture, 213
Security manager service

API, 45
architecture, 44

Sentiment analysis API, 173
Swagger, 183
systemModules section, 38

T, U
Telemetry ingestion point, 14
Text recognition API, 173
Trusted Computing Group (TCG), 209
Trusted execution environment

(TEE), 223
Trusted platform module (TPM), 209

V
Visual Studio (VS)

configuration
cloud explorer, 59
IoT Edge project type, 61
marketplace, 60

context menu, 104
initial solution, 91
module template selection, 90
project template, 89
solution creation, 88

VS Code
command window, 84–85
configuration

C# extension, 57
Docker extension, 58
editor, 55
Git installation, 55
interface, 52
IoT Edge, 54–55
IoT related extensions, 56
keymap extensions, 53
popular extensions, 54
VS Code vs. visual Studio, 50–51
welcome screen, 51

connection string, 92
initial solution, 86
output, 114
solution creation, 84
solution development process, 87–88
solution structure, 86
vs. Visual Studio, 50–51, 53

W, X, Y, Z
WHERE clause, 42
Windows VM, nested virtualization, 65

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Do I Need an Intelligent Edge?
	Edge Computing
	Edge Computing Adoption
	Security
	Direct Access
	Untrusted Execution
	Message Replays
	Direct Access to the Internet

	Network Bandwidth
	Maintenance

	Recognizing Your Organizational Mindset
	Business Cases
	Industrial Automation
	Enhanced Analytics
	Occasionally Offline
	Protocol Translation

	Summary

	Chapter 2: Azure IoT Edge Core Concepts
	Azure IoT Hub
	Containers
	Modules
	Edge Agent and Edge Hub
	Device Twins
	Module Twins
	Edge Message Routing
	Source
	Condition
	Sink

	Edge Device Security
	Edge Deployments
	Summary

	Chapter 3: Azure IoT Edge Development Environment
	Configure VS Code
	VS Code vs. Visual Studio
	First Lap Around VS Code
	Configure VS Code for IoT Edge

	Configure Visual Studio for IoT Edge
	Install .Net Core 2.1
	Install Docker
	Install the IoT Edge Emulator
	Configure IoT Hub
	Create an IoT Hub Instance
	Add an Edge Device to IoT Hub

	Install Azure IoT Edge SDK
	Install the Microsoft Keys
	Install the Container Runtime
	Install the Security Service
	Configure the Security Service

	Summary

	Chapter 4: Hello Edge
	Create a Solution Using VS Code
	Create a Solution Using Visual Studio
	IoT Hub Connection String
	Exploring the Solution Actions
	Develop
	ModuleClient
	IoT Hub Authentication
	Transport Settings
	Message Handler

	Build
	Deploy

	Running Your Solution
	Summary

	Chapter 5: Developing and Debugging Edge Modules
	Edge Development Process
	Azure IoT EdgeHub Dev Tool
	Solution Mode
	Single Module Mode

	Azure IoT Edge Dev Tool
	Getting Started with the IoT Edge Dev Tool
	Using the Preconfigured Container
	Manually Installing the Requirements

	IoT Edge Dev Tool Initial Commands
	Using the IoT Edge Dev Tool

	Debugging Edge Solutions
	VS Code Debugging Overview
	VS Code Debugging in Solution Mode
	VS Code Debugging in Single Module Mode
	Visual Studio Debugging

	Third Party Edge Modules
	Modbus Edge Module
	OPC UA Edge Module

	Summary

	Chapter 6: Analytics on the Edge
	Azure Cognitive Services
	Vision API
	Speech API
	Language API
	Knowledge API
	Search API
	Cognitive Services Containers
	Using a Cognitive Service Container
	Next Steps with Cognitive Services Containers

	Azure Machine Learning Service
	Summary

	Chapter 7: Device Provisioning Service
	Device Provisioning Workflow
	Device Provisioning Service Concepts
	DPS Enrollments
	DPS Allocation Policies
	Reprovisioning

	Device Provision Service Setup
	Configuring an IoT Edge Device
	Summary

	Chapter 8: Azure IoT Edge Security
	Assessing Security Risks
	IoT Edge-Specific Risks
	Edge Security Attacks

	Secure IoT Edge Hardware
	IoT Edge Security Architecture
	Security Manager
	Security Daemon
	Cloud Interface
	Management API
	Workload API
	Container API

	IoT Edge Certificates
	IoT Edge Security Promises
	Trusted Edge Computing
	Summary

	Chapter 9: Azure DevOps for IoT Edge Solutions
	Signing into Azure DevOps
	Azure DevOps Basic Concepts
	Organization
	Project
	Team
	Work Items
	Repository
	Pipelines

	Azure DevOps Configuration
	Create an IoT Edge Build Pipeline
	Create an IoT Edge Release Pipeline
	Approvals
	Gates

	Summary

	Index

